
Solving puzzles through programming
Vamshi Jandhyala

August 2024

Puzzles such as Sudoku, Kakuro etc. have captivated the minds of enthusiasts worldwide.
Despite their seeming simplicity, these puzzles embed intricate logical structures that
challenge human solvers and computational methods alike. This book introduces
approaches for solving logical puzzles by formulating them as integer and constraint
programming problems. By harnessing the expressiveness of mathematical programming,
we capture the essence of these puzzles, translating their rules into compact and efficient
models. Our Python-based implementation using Z3 and Or-tools offers an intuitive
platform for both research and educational purposes. Experimental results showcase the
efficacy of our approach, emphasizing its potential as a powerful tool for puzzle enthusiasts
and researchers in the domain of combinatorial optimization.

Contents

1 Hashiwokakero 3

2 Walls 12

3 L-Panel 19

4 Marupeke 23

5 BlockNumber 27

6 Searchlights 30

7 Calendar Puzzle 34

8 Instant Insanity 38

9 Drive Ya Nuts 40

10 Squares Sudoku 43

11 Calcudoku 46

12 Unusual Crossword 49

13 The Riddle of the Pilgrims 51

14 The Langford Problem 54

15 Skyscrapers 58

16 Numbrix 61

17 Kakuro 64

18 Kakurasu 67

1/116

19 3-In-A-Row puzzle 70

20 Fish 72

21 Flowfree 77

22 Ostomachion 80

23 Numbers in circles 83

24 Sweets in a box 83

25 Bug Byte 86

26 Dancer Pairs 91

27 Some Off Square 94

28 Number hooks 96

29 Sum of squares 98

30 Well Well Well 100

31 Block Party 103

32 Block Party 4 108

33 Figurine figuring 112

34 Queens 113

Bibliography 116

2/116

1 Hashiwokakero
Hashiwokakero, or simply Hashi, is a Japanese single-player puzzle played on a
rectangular grid with no standard size. Some cells of the grid contain a circle,
called island, with a number inside it ranging from one to eight, and the
number of islands is denoted by 𝑛. The remaining positions of the grid are
empty. The player must connect all the islands by drawing bridges between
them. For this reason, the game is often referred to as building bridges. The
solution to the puzzle must respect the following rules:

(i) The bridges must begin and end at distinct islands;
(ii) They must not cross any other bridges or islands;

(iii) They may only run horizontally or vertically;
(iv) At most two bridges may connect any pair of islands;
(v) The number of bridges connected to each island must be equal to the

number inscribed in the circle;
(vi) Each island must be reachable from any other island.

Figure 1: A Hashi puzzle (left) and a feasible solution (right)

1.1 Mathematical Model

The Hashi puzzle can be defined on an undirected graph 𝐺 = (𝑉 , 𝐸), where 𝑉
is the set of vertices representing islands. Let 𝑑𝑖 be the number of bridges to be
constructed from island 𝑖, and |𝑉 | = 𝑛. Let 𝛿(𝑖) be the set of vertices adjacent
to vertex 𝑖 either horizontally or vertically. Let 𝐸 be the set of all edges
connecting two adjacent vertices of 𝑉 . By convention, if (𝑖, 𝑗) ∈ 𝐸, then 𝑖 < 𝑗.
Let ∆ be the set of intersecting edge pairs {(𝑖, 𝑗), (𝑘, 𝑙)} ∈ 𝐸. We model Hashi
as an integer linear program based on which admits a solution if and only if
the Hashi puzzle is feasible. For (𝑖, 𝑗) ∈ 𝐸, our model uses binary variables 𝑦𝑖𝑗
indicating whether two adjacent vertices 𝑖 and 𝑗 are connected by at least one
bridge in the solution, and integer variables 𝑥𝑖𝑗 indicating the number of
bridges between 𝑖 and 𝑗. The formulation is then:

∑
𝑖<𝑘,𝑖∈𝛿(𝑘)

𝑥𝑖𝑘 + ∑
𝑗>𝑘,𝑖∈𝛿(𝑘)

𝑥𝑗𝑘 = 𝑑𝑘, 𝑘 ∈ 𝑉 . (1.1)

𝑦𝑖𝑗 ≤ 𝑥𝑖𝑗 ≤ 2𝑦𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸. (1.2)

3/116

𝑦𝑖𝑗 + 𝑦𝑘𝑙 ≤ 1, {(𝑖, 𝑗), (𝑘, 𝑙)} ∈ Δ. (1.3)

∑
𝑖∈𝑆,𝑗∈𝑉 \𝑆

∨𝑗∈𝑆,𝑖∈𝑉 \𝑆

𝑦𝑖𝑗 ≥ 1, 𝑆 ⊂ 𝑉 , 1 ≤ |𝑆| ≤ 𝑛 − 1. (1.4)

𝑥𝑖𝑗 ∈ {0, 1, 2}, (𝑖, 𝑗) ∈ 𝐸. (1.5)

𝑥𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐸. (1.6)

Constraints (1) force the presence of 𝑑𝑘 bridges for each vertex 𝑘. According to
constraints (2), at most two bridges can exist between any two connected
vertices. These constraints also ensure consistency between the 𝑥𝑖𝑗 and 𝑦𝑖𝑗
variables. Constraints (3) prohibit intersecting bridges, and constraints (4) are
strong connectivity constraints, enforcing the solution to be connected, as in
the traveling salesman problem (Dantzig et al. 1954). Constraints (5) and (6)
define the domains of the variables. This formulation can be strengthened by
adding a valid inequality which exploits the fact that the graph induced by the
positive 𝑦𝑖𝑗 variables must contain a spanning tree. It is called “weak
connectivity constraint” and is found to be helpful in an algorithm in which the
strong connectivity constraints (4) are relaxed.

∑
(𝑖,𝑗)∈𝐸

𝑦𝑖𝑗 ≥ 𝑛 − 1. (1.7)

4/116

1.2 Solved puzzles

Figure 2: Solution to the Honatata puzzle

5/116

Figure 3: Solution to the Metasequoia1 puzzle

Figure 4: Solution to the Metasequoia2 puzzle

6/116

1.3 Python code

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
from ortools.sat.python import cp_model
import networkx as nx

class Hashiwokakero:

 def __init__(self, puzzle):
 self.puzzle = puzzle
 self.r, self.c = len(puzzle), len(puzzle[0])

 def is_path_clear(i1, j1, i2, j2):
 if i1 == i2: # same row
 for j in range(min(j1, j2) + 1, max(j1, j2)):
 if self.puzzle[i1][j] != 0:
 return False
 elif j1 == j2: # same column
 for i in range(min(i1, i2) + 1, max(i1, i2)):
 if self.puzzle[i][j1] != 0:
 return False
 return True

 horizontal_bridges, vertical_bridges = [], []
 self.G = nx.Graph()
 self.d = {}
 for i in range(self.r):
 for j in range(self.c):
 if puzzle[i][j] != 0:
 self.d[i*self.c + j] = puzzle[i][j]
 for k in range(j + 1, self.c): # search right
 if self.puzzle[i][k] != 0 and
 is_path_clear(i, j, i, k):
 horizontal_bridges.append((i, j, i,
k))
 self.G.add_edge(i*self.c + j, i*self.c
+ k)
 for k in range(j - 1, -1, -1): # search left
 if self.puzzle[i][k] != 0 and
 is_path_clear(i, j, i, k):
 horizontal_bridges.append((i, k, i,
j))
 self.G.add_edge(i*self.c + k, i*self.c
+ j)
 for l in range(i + 1, self.r): # search down
 if self.puzzle[l][j] != 0 and
 is_path_clear(i, j, l, j):
 vertical_bridges.append((i, j, l, j))
 self.G.add_edge(i*self.c + j, l*self.c
+ j)
 for l in range(i - 1, -1, -1): # search up
 if self.puzzle[l][j] != 0 and
 is_path_clear(i, j, l, j):
 vertical_bridges.append((l, j, i, j))
 self.G.add_edge(l*self.c + j, i*self.c
+ j)

 self.Delta = set()
 for vb in vertical_bridges:
 for hb in horizontal_bridges:

7/116

 if hb[1] < vb[1] < hb[3] and vb[0] < hb[0] <
vb[2]:
 self.Delta.add(((hb[0]*self.c + hb[1],
 hb[2]*self.c + hb[3]),
 (vb[0]*self.c + vb[1],
 vb[2]*self.c + vb[3])))

 def plot(self, circle_radius=0.08, font_size=12,
line_color='red',
 circle_color='yellow', line_width=2):
 fig, ax = plt.subplots(figsize=(12, 12))

 # Grid spacing
 grid_spacing = 0.2 # Adjusted for larger grids
 # Plot islands (nodes)
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] != 0:
 circle = patches.Circle((j * grid_spacing, i *
grid_spacing),
 circle_radius,
fc=circle_color)
 ax.add_patch(circle)
 plt.text(j * grid_spacing, i * grid_spacing,
str(self.puzzle[i][j]),
 ha='center', va='center',
fontsize=font_size)
 # Plot bridges
 for bridge in self.bridges:
 start, end, num_bridges = bridge
 if num_bridges == 0:
 continue
 # Adjusting for the gap between double bridges
 delta = 0.03 if num_bridges == 2 else 0 # Adjusted
gap
 # Horizontal bridges
 if start[0] == end[0]:
 y = start[0] * grid_spacing
 x1 = start[1] * grid_spacing + circle_radius
 x2 = end[1] * grid_spacing - circle_radius
 if num_bridges == 1:
 plt.plot([x1, x2], [y, y], color=line_color,
lw=line_width)
 else: # 2 bridges
 plt.plot([x1, x2], [y - delta, y - delta],
color=line_color, lw=line_width)
 plt.plot([x1, x2], [y + delta, y + delta],
color=line_color, lw=line_width)
 # Vertical bridges
 elif start[1] == end[1]:
 x = start[1] * grid_spacing
 y1 = start[0] * grid_spacing + circle_radius
 y2 = end[0] * grid_spacing - circle_radius
 if num_bridges == 1:
 plt.plot([x, x], [y1, y2], color=line_color,
lw=line_width)
 else: # 2 bridges
 plt.plot([x - delta, x - delta], [y1, y2],
color=line_color, lw=line_width)

8/116

 plt.plot([x + delta, x + delta], [y1, y2],
color=line_color, lw=line_width)
 ax.set_aspect('equal')
 ax.set_xlim(-0.5, self.c * grid_spacing) # Adjusted for
reduced spacing
 ax.set_ylim(-0.5, self.r * grid_spacing) # Adjusted for
reduced spacing
 plt.gca().invert_yaxis() # To match matrix layout
 plt.axis('off')
 plt.show()

 def solve(self):
 self.model = cp_model.CpModel()
 self.x, self.y = {}, {}

 for (u,v) in self.G.edges:
 i, j = min(u,v), max(u,v)
 self.x[(i,j)] = self.model.NewIntVar(0, 2, 'x_%d_%d' %
(i,j))
 self.y[(i,j)] = self.model.NewIntVar(0, 1, 'y_%d_%d' %
(i,j))

 #Constraint 1
 for k in self.G.nodes:
 s = 0
 for i in self.G.neighbors(k):
 if i < k:
 s += self.x[(i,k)]
 for j in self.G.neighbors(k):
 if j > k:
 s += self.x[(k,j)]
 self.model.Add(s==self.d[k])

 #Constraint 2
 for (u,v) in self.G.edges:
 i, j = min(u,v), max(u,v)
 self.model.Add(self.y[(i,j)] <= self.x[(i,j)])
 self.model.Add(self.x[(i,j)] <= 2*self.y[(i,j)])

 #Constraint 3
 for ((i,j), (k,l),) in self.Delta:
 self.model.Add(self.y[(i,j)] + self.y[(k,l)] <= 1)

 #Constraint 7
 s = 0
 for (u,v) in self.G.edges:
 i, j = min(u,v), max(u,v)
 s += self.y[(i,j)]
 self.model.Add(s >= self.G.number_of_nodes()-1)

 self.solver = cp_model.CpSolver()
 status = self.solver.Solve(self.model)
 self.bridges = None
 if status == cp_model.OPTIMAL or status ==
cp_model.FEASIBLE:
 for (i,j), v in self.x.items():
 val = int(self.solver.Value(self.x[(i,j)]))
 self.bridges.append((divmod(i,self.c),
 divmod(j, self.c), val))

 def plot_solution(self):
 self.solve()
 if self.bridges:
 self.plot()

9/116

 else:
 print("Could not find solution!")

honatata = [
 [4, 0, 0, 4, 0, 0, 1, 0],
 [0, 0, 0, 0, 4, 0, 0, 2],
 [0, 3, 0, 3, 0, 0, 0, 0],
 [0, 0, 3, 0, 8, 0, 0, 4],
 [3, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 4, 0, 4],
 [3, 0, 2, 0, 3, 0, 0, 0],
 [0, 2, 0, 0, 0, 5, 2, 0],
 [3, 0, 0, 0, 0, 0, 0, 1]
]

metasequoia = [
 [0, 2, 0, 2, 0, 0, 3, 0, 2],
 [2, 0, 3, 0, 0, 2, 0, 0, 0],
 [0, 1, 0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 3, 0, 4, 0, 0, 3],
 [4, 0, 3, 0, 1, 0, 0, 2, 0],
 [0, 2, 0, 4, 0, 0, 2, 0, 0],
 [2, 0, 1, 0, 0, 3, 0, 2, 0],
 [0, 2, 0, 0, 1, 0, 1, 0, 2],
 [2, 0, 2, 0, 0, 3, 0, 1, 0]
]

metasequoia2 = [
 [4, 0, 0, 2, 0, 3, 0, 0, 3, 0, 0, 2, 0, 0, 4, 0, 0, 2, 0, 4,
0, 0, 3],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 3, 0, 1, 0, 0, 3, 0, 0, 0, 0,
2, 0, 0],
 [0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0,
0, 4, 0],
 [0, 0, 0, 0, 0, 3, 0, 7, 0, 0, 6, 0, 2, 0, 0, 5, 0, 2, 0, 0,
0, 0, 0],
 [0, 3, 5, 0, 6, 0, 1, 0, 0, 0, 0, 0, 0, 0 ,0, 0, 3, 0, 4, 0,
2, 4, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 4, 0, 3, 0, 0, 0, 0, 0,
0, 0, 0],
 [3, 0, 0, 0, 4, 0, 0, 6, 0, 6, 0, 2, 0, 2, 0, 4, 0, 0, 3, 0,
0, 0, 3],
 [0, 2, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
2, 2, 0],
 [1, 0, 0, 0, 3, 0, 0, 4, 0, 4, 0, 3, 0, 3, 0, 5, 0, 0, 8, 0,
0, 0, 4],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 6, 0, 3, 0, 0, 0, 0, 0,
0, 0, 0],
 [0, 4, 5, 0, 6, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0,
1, 3, 0],
 [0, 0, 0, 0, 0, 3, 0, 7, 0, 0, 4, 0, 4, 0, 0, 5, 0, 2, 0, 0,
0, 0, 0],
 [0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0,
0, 4, 0],
 [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 3, 0, 0, 0, 0,
1, 0, 0],
 [3, 0, 0, 3, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 6, 0, 0, 3, 0, 3,
0, 0, 2]
]

Hashiwokakero(honatata).plot_solution()

10/116

Hashiwokakero(metasequoia).plot_solution()
Hashiwokakero(metasequoia2).plot_solution()

11/116

2 Walls
Walls is a perfect piece of puzzle minimalism. No shading, no symbols. Just
horizontal and vertical lines. The rules are incredibly simple but solving a
puzzle can be spectacularly difficult. The challenge in a Walls puzzle is to fill
each empty cell with either a vertical or a horizontal line, so that the number in
each black cell equals the combined length of the lines ending at that cell. Lines
cannot go throug the black cells. The figure below shows a Walls puzzle along
with the solution.

Figure 5: A Walls puzzle and its solution

2.1 Mathematical Model

We introduce binary variables 𝑣𝑖𝑗 and ℎ𝑖𝑗 to represent a vertical or a horizontal
line in cell (𝑖, 𝑗). We have 𝑙𝑖𝑗 indicating the combined length of the lines
(horizontal and vertical) ending at cell (𝑖, 𝑗). We denote the set of filled cells on
the board by 𝐹 and the set of empty cells by 𝐵 . We now have the following
constraints:

ℎ𝑖𝑗 + 𝑣𝑖𝑗 = 1, ∀(𝑖, 𝑗) ∈ 𝐵 (2.1)

∨𝑝∈𝑃 𝑙
𝑖𝑗

(
((∑

(𝑘,𝑙)∈𝑝𝑉

𝑣𝑘𝑙 + ∑
(𝑘,𝑙)∈𝑝𝐻

ℎ𝑘𝑙 = 𝑙𝑖𝑗
)
)), ∀(𝑖, 𝑗) ∈ 𝐹 (2.2)

∧𝑝∈𝑃 𝑙+1
𝑖𝑗

(
((∑

(𝑘,𝑙)∈𝑝𝑉

𝑣𝑘𝑙 + ∑
(𝑘,𝑙)∈𝑝𝐻

ℎ𝑘𝑙 ≠ 𝑙𝑖𝑗 + 1
)
)), ∀(𝑖, 𝑗) ∈ 𝐹 (2.3)

The first constraint ensures that every cell only contains either a horizontal
line or a vertical line. The second constraint and third constraints are
interesting and require a more detailed explanation. We define 𝑃 𝑙

𝑖𝑗 as the set of
all paths accessible from the cell (𝑖, 𝑗) with each path containing 𝑙 cells. A path
𝑝 belonging to 𝑃 𝑙

𝑖𝑗 can contain cells which are either horizontally or vertically
accessible from (𝑖, 𝑗). The set of cells in path 𝑝 which are horizontally
accessible from (𝑖, 𝑗) is denoted by 𝑝𝐻 and the set of cells which are vertically
accessible is denoted by 𝑝𝑉 .The second constraint ensures that of all paths
containing 𝑙 cells accessible from (𝑖, 𝑗) which have a combined line length of 𝑙,
only one path is selected. In the figure below, for the cell (1, 3), 𝑙 = 3. The set

12/116

𝑃 3
13 contains 5 paths [(0, 3), (1, 1), (1, 2)], [(2, 3), (1, 1), (1, 2)],

[(0, 3), (2, 3), (3, 3)], [(0, 3), (1, 2), (2, 3)], [(1, 2), (2, 3), (3, 3)].

Figure 6: A Walls puzzle and its solution

For the path [(0, 3), (1, 1), (1, 2)], 𝑝𝑉 = {(0, 3)} and 𝑝𝐻 = {(1, 1), (1, 2)}.

Figure 7: A Walls puzzle and its solution

From the above figure, it is easy to see that the second constraint is necessary
but not sufficient to ensure that maximimum combined line length of lines
ending in a given filled black cell (𝑖, 𝑗) is 𝑙𝑖𝑗. That is where the third constraint
comes in. It ensures that none of the paths in 𝑃 𝑙+1

𝑖𝑗 have a combined line length
𝑙 + 1 which guarantees that maximimum combined line length of lines
ending in (𝑖, 𝑗) is indeed 𝑙𝑖𝑗.

2.2 Notes on implementation

The crux of the model is generating the sets 𝑃 𝑙
𝑖𝑗. We first identify all the cells

accessible from a cell (𝑖, 𝑗) in each of the four directions in increasing order of
distance upto a maximum of 𝑙 cells in each direction. Let 𝑅𝑖𝑗 be set of cells to
the right of (𝑖, 𝑗), 𝐿𝑖𝑗 be the set of cells to the left,𝑈𝑖𝑗 be the set of cells in the
upward direction and 𝐷𝑖𝑗 be the set of cells in the downward direction. We
then generate the set of contiguous sub-paths for each of the above sets.We
need to generate sets of sub-paths for the following reason. E.g. even if there
are four cells in 𝑅𝑖𝑗, we might use a sub-path containing two cells from 𝑅𝑖𝑗
when we are generating a path of length 𝑙. Let us denote the sets of sub-paths
by 𝑅′

𝑖𝑗, 𝐿′
𝑖𝑗, 𝐷′

𝑖𝑗 and 𝑈 ′
𝑖𝑗. The number of partitions of 𝑙 gives the maximum

number of ways in which a path of length 𝑙 can be broken down into sub-paths
in the horizontal and vertical directions. For each partition of 𝑙, we can
generate one or more paths by choosing a combination of sub-paths from
𝑅′

𝑖𝑗, 𝐿′
𝑖𝑗, 𝐷′

𝑖𝑗 and 𝑈 ′
𝑖𝑗 accordingly. Here is an illustration of generating the

paths in 𝑃 3
13 using the above procedure. We have

13/116

𝑅13 = {}

𝐿13 = {(1, 2), (1, 1)}

𝑈13 = {(0, 3)}

𝐷13 = {(2, 3), (3, 3)}

(2.1)

𝑅′
13 = {}

𝐿′
13 = {[(1, 2)], [(1, 2), (1, 1)]}

𝑈13 = {[(0, 3)]}

𝐷13 = {[(2, 3)], [(2, 3), (3, 3)]}

(2.2)

The partitions of 3 are {1, 1, 1}, {1, 2} and {3}. To use the first partition, we
need 3 sub-paths of length 1.We can choose sub-path of length 1 from each of
𝐿′

𝑖𝑗, 𝐷′
𝑖𝑗 and 𝑈 ′

𝑖𝑗 which gives us the path [(0, 3), (1, 2), (2, 3)]. To use the
second partition, we need 1 sub-path of length 1 and 2 sub-paths of length 2.
E.g. selecting [(0, 3)] from 𝑈 ′

𝑖𝑗 and [(2, 3), (3, 3)] from 𝐷′
𝑖𝑗 gives us the path

[(0, 3), (2, 3), (3, 3)].The other three paths can be generated in a similar
fashion. None of the subsets 𝑅′

𝑖𝑗, 𝐿′
𝑖𝑗, 𝐷′

𝑖𝑗 and 𝑈 ′
𝑖𝑗 have 3 elements so the third

partition cannot be used.

2.3 Solved puzzles
Here are a couple of hard puzzles from Alex Bellos’ Puzzle Ninja that were
solved using the Python implementation given in the Appendix in under a
couple of seconds.

Figure 8: Puzzle 8 from Alex Bellos' Puzzle Ninja Book

14/116

Figure 9: Puzzle 9 from Alex Bellos' Puzzle Ninja Book

2.4 Python code

import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
from z3 import *
from itertools import product, combinations
from collections import Counter

def partitions(n, I=1):
 yield (n,)
 for i in range(I, n//2 + 1):
 for p in partitions(n-i, i):
 yield (i,) + p

def csl(input_list):
 sublists = []
 for i in range(1, len(input_list)+1):
 sublists.append(input_list[:i])
 return sublists

def enforce_exactly_one_true(constraints):
 exactly_one_true = Or([Xor(c, And(constraints[:i] +
constraints[i+1:]))
 for i, c in enumerate(constraints)])
 return exactly_one_true

def extract_tuples(nested_collection):
 tuples_at_lowest_level = []

 def _extract(collection):
 for item in collection:
 if isinstance(item, tuple):
 tuples_at_lowest_level.append(item)
 elif isinstance(item, (list, tuple)):
 _extract(item)

15/116

 _extract(nested_collection)
 return tuples_at_lowest_level

class Walls:

 def __init__(self, puzzle):
 self.puzzle = puzzle
 self.r, self.c = self.puzzle.shape
 self.d = {}
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] != -1:
 self.d[(i,j)] = self.puzzle[i][j]

 def accessible_cells(self, i, j, path_type="min"):
 HR, HL, VD, VU = defaultdict(list), defaultdict(list),
defaultdict(list), defaultdict(list)
 if path_type=="min":
 d = self.puzzle[i][j]
 else:
 d = self.puzzle[i][j] + 1
 for i in range(self.r):
 for j in range(self.c):
 for k in range(j+1, min(self.c, j+d+1)): # search
right
 if self.puzzle[i][k] == -1:
 HR[(i,j)].append((i,k))
 else:
 break
 for k in range(j-1, max(-1, j-d-1), -1): # search
left
 if self.puzzle[i][k] == -1:
 HL[(i,j)].append((i,k))
 else:
 break
 for l in range(i+1, min(i+d+1, self.r)): # search
down
 if self.puzzle[l][j] == -1:
 VD[(i,j)].append((l,j))
 else:
 break
 for l in range(i-1, max(i-d-1,-1), -1): # search
up
 if self.puzzle[l][j] == -1:
 VU[(i,j)].append((l,j))
 else:
 break
 return HR, HL, VD, VU

 def contiguous_valid_paths(self, i, j, path_type="min"):
 paths = []
 HR, HL, VD, VU = self.accessible_cells(i,j, path_type)
 if path_type=="min":
 d = self.puzzle[i][j]
 else:
 d = self.puzzle[i][j] + 1
 sets = defaultdict(list)
 eHR = [("h",c) for c in HR[(i,j)]]
 eHL = [("h",c) for c in HL[(i,j)]]
 eVD = [("v",c) for c in VD[(i,j)]]
 eVU = [("v",c) for c in VU[(i,j)]]
 for l in [csl(e) for e in [eHR,eHL,eVU,eVD]]:

16/116

 if l:
 for c in l:
 sets[len(c)].append(c)

 for ctr in [Counter(p) for p in partitions(d)]:
 l = []
 for k,v in ctr.items():
 if len(sets[k]) >= v:
 l.append([list(c) for c in
combinations(sets[k],v)])
 if l:
 for p in product(*l):
 ext_tuples = extract_tuples(p)
 if len(set(ext_tuples))==d:
 paths.append(ext_tuples)

 return paths

 def solve(self):
 self.solver = Solver()
 self.h, self.v = {}, {}
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] == -1:
 self.h[(i,j)] = Int('h_%d_%d'% (i,j))
 self.v[(i,j)] = Int('v_%d_%d'% (i,j))
 self.solver.add(And(self.h[(i,j)] >=0,
self.h[(i,j)] <=1))
 self.solver.add(And(self.v[(i,j)] >=0,
self.v[(i,j)] <=1))

 #Constraints
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] == -1:
 self.solver.add(self.h[(i,j)] + self.v[(i,j)]
== 1)
 if self.puzzle[i][j] != -1:
 or_constraints = []
 for path in self.contiguous_valid_paths(i,j):
 s = 0
 for t, c in path:
 if t=="h":
 s += self.h[c]
 else:
 s += self.v[c]
 or_constraints.append(s == self.puzzle[i]
[j])
 if or_constraints:
 self.solver.add(Or(or_constraints))

 not_constraints = []
 for path in self.contiguous_valid_paths(i,j,
"ext"):
 s = 0
 for t, c in path:
 if t=="h":
 s += self.h[c]
 else:
 s += self.v[c]
 not_constraints.append(s != self.puzzle[i]
[j]+1)

17/116

 if not_constraints:
 self.solver.add(And(not_constraints))

 self.sol = None
 if self.solver.check() == sat:
 m = self.solver.model()
 self.sol = np.zeros((self.r, self.c), dtype=np.int8)
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] == -1:
 if m[self.h[(i,j)]] == 1:
 self.sol[i][j] = -1
 else:
 self.sol[i][j] = -2
 else:
 self.sol[i][j] = self.puzzle[i][j]

 def plot(self, cell_size=0.5, font_size=16):
 fig, ax = plt.subplots(figsize=(cell_size*self.c,
cell_size*self.r))
 for y in range(self.r):
 for x in range(self.c):
 # Draw border for each cell
 ax.add_patch(plt.Rectangle((x, self.r-y-1), 1, 1,
fill=False, edgecolor='black', lw=1, linestyle='--')) # <--
dotted line
 # Draw horizontal or vertical lines or number
 if self.sol[y, x] == -2:
 ax.plot([x+0.5, x+0.5], [self.r-y, self.r-
y-1], color='black', lw=2)
 elif self.sol[y, x] == -1:
 ax.plot([x, x+1], [self.r-y-0.5, self.r-
y-0.5], color='black', lw=2)
 else:
 ax.add_patch(plt.Rectangle((x, self.r-y-1), 1,
1, color='black'))
 ax.text(x+0.5, self.r-y-0.5, str(self.sol[y,
x]), color='white',
 ha='center', va='center',
fontweight='bold', fontsize=font_size)

 ax.set_xlim(0, self.c)
 ax.set_ylim(0, self.r)
 ax.set_aspect('equal')
 ax.axis('off')
 plt.tight_layout()
 plt.show()

 def plot_solution(self):
 self.solve()
 if self.sol is not None:
 self.plot()
 else:
 print("Could not find solution!")

puzzle = np.array([
 [-1,1,-1,-1],
 [2,-1,-1,3],
 [-1,-1,1,-1],
 [-1,4,-1,-1]
])

Walls(puzzle).plot_solution()

18/116

3 L-Panel
The challenge is to tile the board with L-shaped tiles excluding the filled
squares as shown in the figure below.

Figure 10: An L-Panel puzzle example

3.1 Solved Puzzles

Figure 11: Puzzle 7 from Alex Bellos' Puzzle Ninja Book

19/116

Figure 12: Puzzle 8 from Alex Bellos' Puzzle Ninja Book

3.2 Python code

import matplotlib.pyplot as plt
import matplotlib.patches as patches
from collections import defaultdict
from ortools.sat.python import cp_model

class LPanel:
 def __init__(self, matrix):
 self.matrix = matrix
 self.r, self.c = len(matrix), len(matrix[0])

 def find_polyominoes_for_cells(self):
 configurations = [
 [(0, 0), (1, 0), (2, 0), (2, 1)],
 [(0, 0), (0, 1), (0, 2), (1, 2)],
 [(0, 1), (1, 1), (2, 1), (2, 0)],
 [(1, 0), (1, 1), (1, 2), (0, 0)],
 [(1, 0), (1, 1), (1, 2), (0, 2)],
 [(0, 0), (0, 1), (1, 0), (2, 0)],
 [(0, 0), (0, 1), (1, 1), (2, 1)],
 [(0, 0), (1, 0), (0, 1), (0, 2)],
]

 polyominoes_for_cells = defaultdict(set)
 possible_polyominoes = []
 for i in range(self.r):
 for j in range(self.c):
 for config in configurations:
 polyomino = [(x + i, y + j) for (x, y) in
config]
 if all(0 <= x < self.c and 0 <= y < self.r and
self.matrix[x][y] != -1 for (x, y) in polyomino):

possible_polyominoes.append(frozenset(polyomino))

 for polyomino in possible_polyominoes:
 for (i,j) in polyomino:
 polyominoes_for_cells[(i, j)].add(polyomino)

 return polyominoes_for_cells

 def visualize_polyominoes(self, polyominoes):

20/116

 def get_adjacent_cells(x, y):
 return [(x-1, y), (x+1, y), (x, y-1), (x, y+1)]

 def are_polyominoes_adjacent(p1, p2):
 for (x, y) in p1:
 for (ax, ay) in get_adjacent_cells(x, y):
 if (ax, ay) in p2:
 return True
 return False

 def get_adjacency_list(polyominoes):
 adj_list = {}
 for p in polyominoes:
 adj_list[p] = []
 for q in polyominoes:
 if p != q and are_polyominoes_adjacent(p, q):
 adj_list[p].append(q)
 return adj_list

 def color_polyominoes(polyominoes):
 adj_list = get_adjacency_list(polyominoes)
 colors = ['#779ECB', '#03C03C', '#966FD6', '#FF6961']
 color_assignment = {}

 for p in polyominoes:
 used_colors = {color_assignment[neighbor] for
neighbor in adj_list[p] if neighbor in color_assignment}
 available_colors = [color for color in colors if
color not in used_colors]
 color_assignment[p] = available_colors[0]

 return color_assignment

 fig, ax = plt.subplots(figsize=(10, 10))
 color_assignments = color_polyominoes(polyominoes)

 for p in polyominoes:
 color = color_assignments[p]
 for (x, y) in p:
 rect = patches.Rectangle((y, self.r - 1 - x), 1,
1, facecolor=color, edgecolor='white', linewidth=0.5)
 ax.add_patch(rect)

 for i in range(self.r):
 for j in range(self.c):
 if self.matrix[i][j] == -1:
 ax.add_patch(patches.Rectangle((j, self.r - 1
- i), 1, 1, facecolor='black'))

 ax.set_xlim(0, self.c)
 ax.set_ylim(0, self.r)
 ax.set_aspect('equal', 'box')
 plt.axis('off')
 plt.show()

 def solve(self):
 model = cp_model.CpModel()
 vars = {}
 from random import random
 for polyominoes in
self.find_polyominoes_for_cells().values():
 for poly in polyominoes:
 vars[poly] = model.NewIntVar(0, 1, str(random()))

 for polyominoes in
self.find_polyominoes_for_cells().values():
 model.Add(sum(vars[poly] for poly in polyominoes)==1)

21/116

 solver = cp_model.CpSolver()
 status = solver.Solve(model)
 result = []
 if status == cp_model.OPTIMAL or status ==
cp_model.FEASIBLE:
 for poly in vars.keys():
 if solver.Value(vars[poly]) == 1:
 result.append(poly)
 return result

 def visualize_result(self):
 result = self.solve()
 if result:
 self.visualize_polyominoes(result)
 else:
 print("No Solution")

matrix = [
 [0, -1, 0, 0, 0, -1],
 [0, 0, 0, -1, 0, 0],
 [-1, 0, -1, 0, 0, 0],
 [0, 0, 0, 0, -1, 0],
 [0, -1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, -1]
]

matrix7 = [
 [-1, 0, -1, 0, 0, -1, 0, 0, -1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1],
 [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, -1],
 [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, -1, 0, 0, 0, 0, 0, 0, 0, -1],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, -1, 0, 0, 0, 0, -1, 0],
]

matrix8 = [
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, -1, 0, 0, -1, 0, 0, 0, -1],
 [0, 0, 0, -1, 0, 0, 0, -1, 0, 0],
 [0, -1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, -1, 0, 0, 0],
 [0, 0, -1, 0, 0, -1, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, -1, 0, 0],
 [0, -1, 0, 0, -1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]

dp = [
 [0, 0, 0, 0, 0, 0, -1, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, -1, 0, -1],
 [0, -1, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0]
]

LPanel(dp).visualize_result()

22/116

4 Marupeke
The challenge here is to fill each empty cell with either an O or an X, so that no
more than two consecutive cells, either horizontally, vertically or diagonally,
contain the same symbol.

4.1 Solved Puzzles

Figure 13: Puzzle 4 from Alex Bellos' Puzzle Ninja Book

Figure 14: Puzzle 5 from Alex Bellos' Puzzle Ninja Book

4.2 Python code

import matplotlib.pyplot as plt
import matplotlib.patches as patches
from z3 import *

class Marupeke:
 def __init__(self, matrix):
 self.matrix = matrix

23/116

 self.r, self.c = len(matrix), len(matrix[0])

 def get_all_consecutive_cells(self):
 def get_consecutive_cells(i, j):
 directions = [
 [(0, 1), (0, 2)], # Horizontal to the right
 [(1, 0), (2, 0)], # Vertical down
 [(1, 1), (2, 2)], # Diagonal right-down
 [(1, -1), (2, -2)] # Diagonal left-down
]

 valid_sequences = []
 for direction in directions:
 sequence = [(i, j)]
 valid = True

 for dx, dy in direction:
 x, y = i + dx, j + dy
 if 0 <= x < self.r and 0 <= y < self.c:
 if self.matrix[x][y] == -1:
 valid = False
 break
 sequence.append((x, y))
 else:
 valid = False
 break

 if valid:
 valid_sequences.append(sequence)

 return valid_sequences

 result = {}
 for i in range(self.r):
 for j in range(self.c):
 if self.matrix[i][j] != -1:
 sequences = get_consecutive_cells(i, j)
 if sequences:
 result[(i, j)] = sequences
 return result

 def solve(self):
 solver = Solver()
 v = {}
 for i in range(self.r):
 for j in range(self.c):
 if self.matrix[i][j] != -1:
 v[(i,j)] = Int("v_%d_%d"%(i,j))
 solver.add(And(v[(i,j)] >=0, v[(i,j)] <=1))

 and_constraints = []
 for ind, seqs in self.get_all_consecutive_cells().items():
 not_constraints = []
 for cells in seqs:
 not_constraints.append(sum(v[cell] for cell in
cells)!=0)
 not_constraints.append(sum(v[cell] for cell in
cells)!=3)
 and_constraints.append(And(not_constraints))
 solver.add(And(and_constraints))

 for i in range(self.r):
 for j in range(self.c):

24/116

 if self.matrix[i][j] != -1 and self.matrix[i][j] !
= -2:
 solver.add(And(v[(i,j)]==self.matrix[i][j]))

 print(solver)
 result = {}
 if solver.check() == sat:
 model = solver.model()
 for cell in v.keys():
 result[cell] = model[v[cell]]
 return result

 def visualize_matrix(self, cell_values):
 fig, ax = plt.subplots(figsize=(10, 10))
 fontsize = (min(fig.get_size_inches()) * 72 // max(self.r,
self.c)) * 0.5

 for i in range(self.r):
 for j in range(self.c):
 cell_color = 'white'
 # Black cell for value -1 in the matrix
 if self.matrix[i][j] == -1:
 cell_color = 'black'
 ax.add_patch(patches.Rectangle((j, self.r - 1 -
i), 1, 1, facecolor=cell_color, edgecolor='black', linewidth=2))

 # Visualize values from the dictionary
 cell_value = cell_values.get((i, j), None)
 if cell_value == 0:
 ax.text(j + 0.5, self.r - i - 0.5, 'O',
ha='center', va='center', fontsize=fontsize)
 elif cell_value == 1:
 ax.text(j + 0.5, self.r - i - 0.5, 'X',
ha='center', va='center', fontsize=fontsize)

 ax.set_xlim(0, self.c)
 ax.set_ylim(0, self.r)
 ax.set_aspect('equal', 'box')
 plt.axis('off')
 plt.show()

 def visualize_result(self):
 result = self.solve()
 if result:
 self.visualize_matrix(result)
 else:
 print("No Solution.")

matrix = [
 [-2, 1, -2, -2, -2, -2],
 [-2, -2, -2, -1, -2, 1],
 [0, -2, -2, -2, -2, 0],
 [-2, -2, -1, -2, -2, -2],
 [-1, -2, 0, -2, -2, 0],
 [1, -2, -2, 1, -2, -2],
]

matrix5 = [
 [-2, -2, -2, -2, 1, -1, -2, -2, -2, -2],
 [-2, -2, 1, -1, 0, -2, -1, 0, -2, -2],
 [-2, -2, -2, -2, -1, -2, -2, -1, -2, 0],
 [-2, -2, -1, -2, -2, -2, -1, -2, -1, 0],
 [0, 1, -1, -2, -2, -2, -2, -1, -2, -2],

25/116

 [0, -2, -1, -1, 0, -2, -2, -2, -2, -1],
 [-2, -2, 0, -1, -2, -2, 0, -2, -2, 1],
 [-2, -1, -2, -2, -2, -1, -1, -2, -2, -2],
 [-2, 0, -2, -2, -2, -2, -2, -2, -2, -2],
 [-2, 1, -2, -2, -1, 0, -2, -2, 1, -2],
]

Marupeke(matrix5).visualize_result()

26/116

5 BlockNumber
In this puzzle, a grid is divided into blocks. Fill each block with the number(s)
starting from 1 and counting upwards. So a single cell block contains just a 1. A
two cell block contains 1 and 2. A three cell block contains 1, 2 and 3; and so on.

Figure 15: A BlockNumber puzzle and its solution

5.1 Solved Puzzles

Figure 16: A BlockNumber puzzle and its solution

5.2 Python code

from z3 import *
import matplotlib.pyplot as plt
import networkx as nx
from itertools import combinations

class BlockNumber:
 def __init__(self, blocks, rows, cols):
 self.blocks = blocks
 self.r, self.c = rows, cols

 def solve(self):
 solver = Solver()
 v = {}
 for block in self.blocks:
 for cell, val in block.items():
 v[cell] = Int(str(cell))
 solver.add(And(v[cell] >=1, v[cell]
<=len(block.keys())))
 if val:

27/116

 solver.add(v[cell] == val)

 for block in self.blocks:
 solver.add(Distinct([v[cell] for cell in
block.keys()]))

 def adjacent_cells(i, j):
 directions = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1,
0), (1, -1), (0, -1), (-1, -1)]
 neighbors = []
 for dx, dy in directions:
 x, y = i + dx, j + dy
 if 0 <= x < self.r and 0 <= y < self.c:
 neighbors.append((x, y))
 return neighbors

 for i in range(self.r):
 for j in range(self.c):
 for nc in adjacent_cells(i,j):
 solver.add(v[(i,j)] != v[nc])

 result_blocks = []
 if solver.check() == sat:
 model = solver.model()
 for block in self.blocks:
 result_block = {}
 for cell in block.keys():
 result_block[cell] = model[v[cell]]
 result_blocks.append(result_block)
 return result_blocks

 def visualize_blocks(self, block_list):
 def are_adjacent(block1, block2):
 for (i1, j1) in block1.keys():
 for (i2, j2) in block2.keys():
 if abs(i1-i2) <= 1 and abs(j1-j2) <= 1:
 return True
 return False

 def color_blocks(block_list):
 G = nx.Graph()
 for i, block in enumerate(block_list):
 G.add_node(i)
 for i, j in combinations(range(len(block_list)), 2):
 if are_adjacent(block_list[i], block_list[j]):
 G.add_edge(i, j)
 coloring = nx.coloring.greedy_color(G,
strategy='largest_first')
 return coloring

 colors = ['#836953', '#778899', '#4B0082', '#FF4500']

 coloring = color_blocks(block_list)
 fig, ax = plt.subplots()

 for idx, block in enumerate(block_list):
 for (i, j), val in block.items():
 color = colors[coloring[idx] % len(colors)]
 rect = plt.Rectangle((j, i), 1, 1,
facecolor=color, edgecolor='black')
 ax.add_patch(rect)
 ax.text(j+0.5, i+0.5, str(val), ha='center',
va='center', color='white', fontsize=20)

 ax.set_xlim(0, self.c)

28/116

 ax.set_ylim(0, self.c)
 ax.set_xticks(range(self.c))
 ax.set_yticks(range(self.r))
 ax.grid(which='both', linewidth=2)
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.gca().invert_yaxis()
 plt.show()

 def visualize_solution(self):
 result = self.solve()
 if result:
 self.visualize_blocks(self.blocks)
 self.visualize_blocks(result)
 else:
 print("No solution found!")

puzzle1 = [
 {(0,0):"",(0,1):"",(0,2):""},
 {(0,3):"",(1,2):"",(2,3):"",(1,3):""},
 {(1,0):"",(1,1):"",(2,0):"",(3,0):1},
 {(2,1):"",(2,2):"",(3,1):"",(3,2):"",(3,3):3},
]

puzzle3= [
 {(0,0):"",(0,1):"",(1,1):"",(2,1):""},
 {(0,2):"",(1,2):""},
 {(0,3):"",(0,4):"",(0,5):"",(0,6):"",(1,3):""},
 {(1,0):"",(2,0):"",(3,0):"",(4,0):"",(5,0):""},
 {(2,2):"",(2,3):"",(3,1):"",(3,2):"",(3,3):""},
 {(1,4):"",(2,4):"",(3,4):""},
 {(1,5):"",(1,6):"",(2,5):"",(2,6):""},
 {(4,1):"",(4,2):"",(5,1):1,(6,0):"",(6,1):""},
 {(4,3):"",(5,2):"",(5,3):"",(6,2):"",(6,3):""},
 {(3,5):"",(4,4):"",(4,5):"",(5,4):"",(5,5):""},
 {(3,6):"",(4,6):"",(5,6):"",(6,6):""},
 {(6,4):"",(6,5):""},
]

BlockNumber(puzzle3,7,7).visualize_solution()

29/116

6 Searchlights
The challenge is to place circles in some cells of the grid following the rules
below.A number in a black cell indicates how many lights you would see from
that cell looking horizontally and vertically(but not diagonally). You can see
through lights but not through black cells. A cell can have atmost one light.

Figure 17: An examples Searchlights puzzle

6.1 Solved Puzzles

Figure 18: Puzzle 4 from Alex Bellos' Puzzle Ninja Book

30/116

Figure 19: Puzzle 5 from Alex Bellos' Puzzle Ninja Book

6.2 Python code

import numpy as np
import matplotlib.pyplot as plt
from z3 import *

class Searchlights:
 def __init__(self, puzzle):
 self.puzzle = puzzle
 self.r, self.c = self.puzzle.shape
 self.d = {}
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] != 0:
 self.d[(i,j)] = self.puzzle[i][j]

 def accessible_cells(self, i, j):
 cells = []
 for k in range(j+1, self.c): # search right
 if self.puzzle[i][k] == 0:
 cells.append((i,k))
 else:
 break
 for k in range(j-1, -1, -1): # search left
 if self.puzzle[i][k] == 0:
 cells.append((i,k))
 else:
 break
 for l in range(i+1, self.r): # search down
 if self.puzzle[l][j] == 0:
 cells.append((l,j))

31/116

 else:
 break
 for l in range(i-1, -1, -1): # search up
 if self.puzzle[l][j] == 0:
 cells.append((l,j))
 else:
 break
 return cells

 def solve(self):
 solver = Solver()
 v = {}
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] == 0:
 v[(i,j)] = Int('v_%d_%d'% (i,j))
 solver.add(And(v[(i,j)] >=0, v[(i,j)] <=1))

 #Constraints
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] != 0:
 print(i,j,self.accessible_cells(i,j))
 solver.add(And(sum([v[c] for c in
self.accessible_cells(i,j)])==self.d[(i,j)]))

 result = {}
 if solver.check() == sat:
 model = solver.model()
 for i in range(self.r):
 for j in range(self.c):
 if self.puzzle[i][j] != 0:
 result[(i,j)] = self.d[(i,j)]
 else:
 if model[v[(i,j)]] == 1:
 result[(i,j)] = "O"
 else:
 result[(i,j)] = ""
 return result

 def visualize_grid(self, data):
 fig, ax = plt.subplots(figsize=(self.c, self.r))
 for i in range(self.r):
 for j in range(self.c):
 facecolor = "white" # default color
 textcolor = "black"
 text = ""

 if data[(i, j)] != "O" and data[(i, j)] != "" :
 facecolor = "black"
 textcolor = "white"
 text = str(data[(i, j)])
 elif data[(i, j)] == "O":
 text = "O"

 ax.add_patch(plt.Rectangle((j, i), 1, 1,
facecolor=facecolor, edgecolor='black'))
 if text:
 ax.text(j + 0.5, i + 0.5, text, ha='center',
va='center', color=textcolor, fontsize=15, fontweight='bold')

 ax.set_xlim(0, self.c)
 ax.set_ylim(0, self.r)

32/116

 ax.set_aspect('equal')
 ax.axis('off')
 plt.gca().invert_yaxis()
 plt.tight_layout()
 plt.show()

 def visualize_solution(self):
 result = self.solve()
 if result:
 self.visualize_grid(result)

puzzle = np.array([
 [2,0,0,0],
 [0,1,0,2],
 [2,0,4,0],
 [0,0,0,3]
])

puzzle4 = np.array([
 [0,0,3,0,0,0,0,1,0],
 [0,2,0,0,0,4,0,0,3],
 [2,0,0,2,0,0,2,0,0],
 [0,0,4,0,0,0,0,2,0],
 [0,0,0,0,1,0,0,0,0],
 [0,2,0,0,0,0,4,0,0],
 [0,0,2,0,0,1,0,0,1],
 [4,0,0,3,0,0,0,3,0],
 [0,3,0,0,0,0,3,0,0],
])

Searchlights(puzzle4).visualize_solution()

33/116

7 Calendar Puzzle
A-Puzzle-A-Day is a very fun and addictive puzzle that gives you a new
challenge every single day of the year. All you need to do is fit these eight pieces
into the calendar frame to leave one month and one day showing. Can you find
your birthday? Your favorite holidays? Your anniversary? Today’s date? Every
day you have a new puzzle!

7.1 Python code

import numpy as np
from ortools.sat.python import cp_model
import svgwrite
import datetime

def polyomino_rotations(polyomino):
 def rotate_polyomino(polyomino):
 rot_poly = [(square[1], -square[0]) for square in
polyomino]
 min_x = min(rot_poly, key=lambda square: square[0])[0]
 min_y = min(rot_poly, key=lambda square: square[1])[1]
 return [(square[0] - min_x, square[1] - min_y) for square
in rot_poly]

 rotations = [polyomino]
 for i in range(3):
 rotations.append(rotate_polyomino(rotations[-1]))
 return rotations

def polyomino_reflections(polyomino):
 def reflect_polyomino(polyomino, axis="x"):
 ref_poly = []
 for x, y in polyomino:
 if axis == "x":
 ref_poly.append((x, -y))
 else:
 ref_poly.append((-x, y))
 min_x = min(ref_poly, key=lambda square: square[0])[0]
 min_y = min(ref_poly, key=lambda square: square[1])[1]
 return [(square[0] - min_x, square[1] - min_y) for square
in ref_poly]

 return [reflect_polyomino(polyomino, "x"),
reflect_polyomino(polyomino, "y")]

def polyomino_translations(polyomino, h=6, w=6):
 translations = []
 for x in range(0, h+1):
 for y in range(0, w+1):
 trans_poly = [(square[0] + x, square[1] + y) for
square in polyomino]
 max_x = max(trans_poly, key=lambda square: square[0])
[0]
 max_y = max(trans_poly, key=lambda square: square[1])
[1]
 if max_x <= h and max_y <= w:
 translations.append(trans_poly)
 return translations

def polyomino_matrix(polyomino, h=6, w=6):

34/116

 poly_mat = np.zeros((h + 1, w + 1), dtype=int)
 for coords in polyomino:
 poly_mat[coords[0], coords[1]] = 1
 return poly_mat

def date_matrix(month, day):
 month_coords = {
 "Jan": (0, 0),
 "Feb": (0, 1),
 "Mar": (0, 2),
 "Apr": (0, 3),
 "May": (0, 4),
 "Jun": (0, 5),
 "Jul": (1, 0),
 "Aug": (1, 1),
 "Sep": (1, 2),
 "Oct": (1, 3),
 "Nov": (1, 4),
 "Dec": (1, 5),
 }

 day_coords = {}
 for i in range(1, 32):
 if i % 7:
 day_coords[i] = (2 + i // 7, i % 7 - 1)
 else:
 day_coords[i] = (1 + i // 7, 6)

 month_c, day_c = month_coords[month], day_coords[day]
 board_mat = np.ones((7, 7), dtype=int)
 board_mat[0, 6] = 0
 board_mat[1, 6] = 0
 board_mat[6, 3:] = 0
 board_mat[day_c[0], day_c[1]] = 0
 board_mat[month_c[0], month_c[1]] = 0
 return board_mat

polyominoes = [
 [(0, 0), (0, 1), (0, 2), (1, 2), (0, 3)],
 [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)],
 [(0, 0), (0, 1), (1, 0), (2, 0), (2, 1)],
 [(0, 2), (1, 0), (1, 1), (1, 2), (2, 0)],
 [(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)],
 [(0, 0), (1, 0), (2, 0), (2, 1), (3, 1)],
 [(0, 0), (0, 1), (0, 2), (0, 3), (1, 0)],
 [(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)],
]

def solve_puzzle(puzzle_matrix):
 model = cp_model.CpModel()
 all_variables, var_matrix_map = [], {}
 i = 0
 for polyomino in polyominoes:
 row_variables, polyomino_matrices = [], []
 orientations = polyomino_rotations(polyomino) +
polyomino_reflections(polyomino)
 for orientation in orientations:
 translations = polyomino_translations(orientation)
 for elem in translations:
 i += 1
 mat = polyomino_matrix(elem)
 polyomino_matrices.append(mat)
 var = model.NewBoolVar(f"x_{i}")

35/116

 row_variables.append(var)
 var_matrix_map[var] = mat
 all_variables.append(row_variables)

 for row in all_variables:
 s = 0
 for var in row:
 s += var
 model.Add(s == 1)

 for i in range(puzzle_matrix.shape[0]):
 for j in range(puzzle_matrix.shape[1]):
 s = 0
 for var, mat in var_matrix_map.items():
 s += var * mat[i, j]
 model.Add(s == puzzle_matrix[i, j])

 solver = cp_model.CpSolver()
 status = solver.Solve(model)
 if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
 return (solver, all_variables, var_matrix_map)
 else:
 print(solver.StatusName(status))
 return (None, None, None)

def create_svg(color_polyomino_map, filename):
 square_size = 50
 padding = 10
 image_size = (7 * square_size + 6 * padding, 7 * square_size +
6 * padding)
 dwg = svgwrite.Drawing(filename, size=image_size)
 group = dwg.add(dwg.g())
 for color, mat in color_polyomino_map.items():
 for i in range(mat.shape[0]):
 for j in range(mat.shape[1]):
 if mat[i, j] == 1:
 group.add(
 dwg.rect(
 (j * (square_size + padding), i *
(square_size + padding)),
 (square_size, square_size),
 fill=svgwrite.rgb(*color),
)
)
 dwg.save()

colors = [
 (141, 198, 63), # Light green
 (179, 153, 255), # Lavender
 (246, 178, 107), # Light peach
 (128, 223, 255), # Light blue
 (243, 234, 90), # Light yellow
 (251, 117, 89), # Coral
 (150, 199, 237), # Sky blue
 (227, 147, 186), # Light pink
]

def render_puzzle_solution(month, date, filename):
 puzzle_matrix = date_matrix(month, date)
 color_polyomino_map = {}
 solver, all_variables, var_matrix_map =
solve_puzzle(puzzle_matrix)
 if solver:

36/116

 for col, row in zip(colors, all_variables):
 for var in row:
 if solver.Value(var) == 1:
 color_polyomino_map[col] = var_matrix_map[var]
 create_svg(color_polyomino_map, filename)

def render_puzzle_solutions_year():
 date_list = []
 for month in range(1, 4):
 for day in range(1, 32):
 try:
 date = datetime.datetime(year=2023, month=month,
day=day)
 month_string = date.strftime("%b")
 date_list.append((month_string, day))
 except ValueError:
 pass
 try:
 render_puzzle_solution(month, date, month + str(date) +
".svg")
 except:
 print("No solution found for", month, date)

def render_puzzle_solutions_date(month, date):
 render_puzzle_solution(month, date, month + str(date) +
".svg")

render_puzzle_solutions_date("Feb", 29)

37/116

8 Instant Insanity
Instant Insanity is a puzzle consisting of four cubes. Each of the six faces of
each cube is coloured with one of four colours: Blue, Green, Red, or White. The
goal is to stack the four cubes on top of each other such that each colour
appears exactly once on each of the four sides of the resulting tower. Here is a
sample configuration of the cubes in the puzzle:

Figure 20: Example configuration of the cubes

8.1 Solution

The brute force approach is straightforward and can be extended to 5 cubes as
well.

We generate all possible orientations of each cube. There are 24 orientations as
the front face could be selected in 6 ways and for each selection of the front
face, you have 4 ways of choosing the top face.

Generate all possible stacks of four cubes where each cube is in one of the 24
orientations.

Check if the colours on the faces making up the front, back, left and right sides
of the stack are all different.

The code below gives us the following solution for the puzzle above:

Cube Front Back Left Right

1 B W B R

2 W G R G

3 G R W B

4 R B G W

The solution to the puzzle given in 1.1

8.1.1 Python Code

from enum import Enum
import numpy as np

38/116

from itertools import product

class Col(Enum):
 R = 1
 G = 2
 B = 3
 W = 5

cubes = [[(Col.G, Col.W),(Col.B, Col.W),(Col.B, Col.R)],
 [(Col.B, Col.B),(Col.G, Col.W),(Col.R, Col.G)],
 [(Col.R, Col.W),(Col.R, Col.G),(Col.B, Col.W)],
 [(Col.R, Col.R),(Col.G, Col.W),(Col.B, Col.R)]]

def cube_syms(cube):
 (a,b),(c,d),(e,f) = cube
 return np.array([
 [a, b, c, d, e, f],[a, b, e, f, d, c],[a, b, d, c, f, e],[a, b, f,
e, c, d],
 [b, a, d, c, e, f],[b, a, e, f, c, d],[b, a, c, d, f, e],[b, a, f,
e, d, c],
 [c, d, b, a, e, f],[c, d, a, b, f, e],[c, d, e, f, a, b],[c, d, f,
e, b, a],
 [d, c, a, b, e, f],[d, c, e, f, b, a],[d, c, b, a, f, e],[d, c, f,
e, a, b],
 [e, f, a, b, c, d],[e, f, c, d, b, a],[e, f, b, a, d, c],[e, f, d,
c, a, b],
 [f, e, d, c, b, a],[f, e, b, a, c, d],[f, e, c, d, a, b],[f, e, a,
b, d, c]])

def solution(cubes):
 n = len(cubes)
 for cubes in product(*[cube_syms(c) for c in cubes]):
 stack = np.vstack(list(cubes))
 f, b, l, r = [stack[:,i] for i in range(n)]
 if len(set(f))== len(set(b))==len(set(l))==len(set(r))==n:
 return (f,b,l,r)

def pretty_print(sol):
 print('Cube', 'F','B', 'L','R')
 for i, (f,l,b,r) in enumerate(zip(*sol)):
 print(f'{i+1} ', f.name, l.name, b.name, r.name)

pretty_print(solution(cubes))

39/116

9 Drive Ya Nuts
Remove the hexagonal pieces from the pegs and then try to put them back so
that the numbers on all edges match.

Figure 21: Instant Insanity

9.1 Solution

The numbering scheme of each nut starts with 1 and proceeds in the anti-
clockwise direction as given below:

(i) 1 6 5 4 3 2

(ii) 1 4 3 6 5 2

(iii) 1 6 4 2 5 3

(iv) 1 6 2 4 5 3

(v) 1 6 5 3 2 4

(vi) 1 4 6 2 3 5

(vii) 1 2 3 4 5 6

The algorithm proceeds as follows:

Choose one of the seven rings as the central ring.

40/116

Choose one permutation of the other 6 rings from 6! permutations.

For each of the six rings in the above permutation, generate all possible
rotations i.e. 6 rotations.

Check if numbers match along the aligned edges of the rings. If the 7 rings and
their edges are labelled as shown in the diagram below, then the following
constraints must be satisfied:

𝑟2𝑎 = 𝑟1𝑎 ∨ 𝑟2𝑓 = 𝑟3𝑏 ∨ 𝑟2𝑏 = 𝑟7𝑓 ∨
𝑟3𝑎 = 𝑟1𝑏 ∨ 𝑟3𝑓 = 𝑟4𝑏 ∨ 𝑟1𝑐 = 𝑟4𝑎 ∨
𝑟4𝑓 = 𝑟5𝑏 ∨ 𝑟1𝑑 = 𝑟5𝑎 ∨ 𝑟5𝑓 = 𝑟6𝑏 ∨
𝑟6𝑎 = 𝑟1𝑒 ∨ 𝑟6𝑓 = 𝑟7𝑏 ∨ 𝑟7𝑎 = 𝑟1𝑓

(9.1)

Figure 22: Configuration State

The code below gives the following solution:

Ring a b c d e f

𝑟1 1 6 2 4 5 3

𝑟2 1 4 6 2 3 5

41/116

𝑟3 6 5 3 2 4 1

𝑟4 2 1 4 3 6 5

𝑟5 4 5 6 1 2 3

𝑟6 5 3 1 6 4 2

𝑟7 3 2 1 6 5 4

The solution to the puzzle

9.2 Python Code
from itertools import permutations, product
from numpy import array, roll

rings = {'A':[1, 6, 5, 4, 3, 2],
 'B':[1, 4, 3, 6, 5, 2],
 'C':[1, 6, 4, 2, 5, 3],
 'D':[1, 6, 2, 4, 5, 3],
 'E':[1, 6, 5, 3, 2, 4],
 'F':[1, 4, 6, 2, 3, 5],
 'G':[1, 2, 3, 4, 5, 6]}

def rotations(ring):
 rot, rots = array(ring), []
 for i in range(6):
 rots.append(roll(rot, i))
 return rots

def solution(rings):
 for r1k, r1v in rings.items():
 r1a, r1b, r1c, r1d, r1e, r1f = r1v
 for perm in permutations(list(set(rings.keys())-set([r1k]))):
 for (r2, r3, r4, r5, r6, r7) in
product(*[rotations(rings[r]) for r in perm]):
 r2a, r2b, _, _, _, r2f = r2
 r3a, r3b, _, _, _, r3f = r3
 r4a, r4b, _, _, _, r4f = r4
 r5a, r5b, _, _, _, r5f = r5
 r6a, r6b, _, _, _, r6f = r6
 r7a, r7b, _, _, _, r7f = r7
 if r2a == r1a and r2f == r3b and r2b == r7f and \
 r3a == r1b and r3f == r4b and r1c == r4a and \
 r4f == r5b and r1d == r5a and r5f == r6b and \
 r6a == r1e and r6f == r7b and r7a == r1f:
 return (r1,r2,r3,r4,r5,r6,r7)

print(solution(rings))

42/116

10 Squares Sudoku
In addition to the normal Sudoku rules, there is one additional rule for a
Squares Sudoku puzzle - sum of the numbers in each **cage** should be a
perfect square. Here is a hard Squares Sudoku puzzle:

Figure 23:

10.1 Python code
from z3 import Solver, And, Int, Distinct, sat, If, Or

puzzle = [
 [(0,0),(0,1)],
 [(0,2),(0,3)],
 [(0,4),(1,3),(1,4)],
 [(0,5),(1,5),(0,6)],
 [(0,7),(1,7),(1,6),(2,6)],
 [(0,8),(1,8),(2,8)],
 [(1,0),(2,0),(3,0)],
 [(1,1),(2,1),(3,1),(1,2),(2,2)],
 [(2,3),(2,4),(2,5)],
 [(3,6),(3,7),(2,7)],
 [(4,0),(4,1),(4,2),(5,0)],

43/116

 [(4,6),(5,6),(5,7)],
 [(4,7),(4,8),(3,8)],
 [(5,8),(6,8)],
 [(6,0),(7,0)],
 [(6,1),(6,2)],
 [(6,3),(6,4),(7,3),(7,4)],
 [(6,5),(7,5),(8,5)],
 [(6,6),(6,7)],
 [(7,1),(7,2)],
 [(7,6),(7,7),(7,8)],
 [(8,0),(8,1),(8,2)],
 [(8,3),(8,4)],
 [(8,6),(8,7),(8,8)],
]

def print_grid(mod, x, rows, cols):
 for i in range(rows):
 print(" ".join([str(mod.eval(x[i][j])) for j in range(cols)]))

def solveSqudoku(puzzle, n):
 X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(n)] for i in
range(n)]

 # each cell contains a value in {1, ..., n}
 cells_c = [And(1 <= X[i][j], X[i][j] <= n) for i in range(n)
 for j in range(n)]

 # each row contains a digit at most once
 rows_c = [Distinct(X[i]) for i in range(n)]

 # each column contains a digit at most once
 cols_c = [Distinct([X[i][j] for i in range(n)]) for j in range(n)]

 # each 3x3 square contains a digit at most once
 sq_c = [Distinct([X[3*i0 + i][3*j0 + j]
 for i in range(3) for j in range(3)])
 for i0 in range(3) for j0 in range(3)]

 # sum of numbers in each cage is a square
 puzz_c =[]
 for cage in puzzle:
 cs = sum([X[i][j] for i,j in cage])
 puzz_c.append(Or([(cs==k) for k in [4, 9, 16, 25]]))

 squdoku_c = cells_c + rows_c + cols_c + [And(puzz_c)] + sq_c

 s = Solver()
 s.add(squdoku_c)
 if s.check() == sat:
 m = s.model()
 print("Here is the solution")
 print_grid(m, X, n, n)
 else:

44/116

 print("Failed to solve the puzzle")

solveSqudoku(puzzle, 9)

Here is the solution:

6 3 4 5 9 1 8 7 2
8 2 1 3 4 5 7 9 6
5 7 9 8 2 6 4 3 1
3 6 7 2 1 8 9 4 5
1 9 2 7 5 4 6 8 3
4 5 8 9 6 3 1 2 7
7 4 5 6 8 2 3 1 9
9 1 3 4 7 5 2 6 8
2 8 6 1 3 9 7 5 4

45/116

11 Calcudoku
Calcudoku is just like Sudoku - you must enter numbers into a grid in such a
way so that no number is repeated in any row or column. But Calcudoku
puzzles have an added mathematical component! Each grid is split up into
smaller sections of 2 or more squares, and each of those sections has an
arithmetic equation attached to it (either addition, subtraction, multiplication
or division). You must complete the grid so that the numbers is each section
equal the mathematical formula assigned to it.Here is a hard Calcudoku puzzle

Figure 24:

11.1 Python code
from z3 import Solver, And, Int, Distinct, sat, If
from functools import reduce
import operator

def Max(x):
 return reduce(lambda a, b: If(a > b, a, b), x)

def cd_div(v, *x):
 m = Max(x)
 m /= reduce(operator.mul, (If(i != m, i, 1) for i in x))
 return m == v

def cd_sub(v, *x):
 m = Max(x)
 m -= sum(If(i != m, i, 0) for i in x)
 return m == v

46/116

def print_grid(mod, x, rows, cols):
 for i in range(rows):
 print(" ".join([str(mod.eval(x[i][j])) for j in range(cols)]))

This is the encoding of the puzzle
def hardest_calcudoku(X):
 return [
 X[0][0] + X[0][1] + X[0][2] + X[1][0] + X[2][0] == 21,
 X[0][3] * X[0][4] * X[0][5] * X[1][4] == 60,
 X[0][6] + X[0][7] + X[0][8] + X[1][8] + X[2][8] == 25,
 cd_sub(6, X[1][1], X[1][2]),
 X[1][3] + X[2][3] == 11,
 cd_sub(4, X[1][5], X[2][5]),
 X[1][6] + X[1][7] == 13,
 X[2][1] + X[3][1] == 8,
 X[2][2] == 8,
 X[2][4] == 2,
 X[2][6] == 9,
 X[2][7] + X[3][7] == 11,
 X[3][0] + X[4][0] + X[5][0] + X[4][1] == 24,
 X[3][2] + X[3][3] == 13,
 X[3][4] + X[4][4] + X[5][4] + X[4][5] + X[4][3]== 25,
 cd_sub(3, X[3][5], X[3][6]),
 X[3][8] + X[4][8] + X[5][8] + X[4][7] == 17,
 X[4][2] == 2,
 X[4][6] == 3,
 cd_sub(1, X[5][1], X[6][1]),
 X[5][2] + X[5][3] == 13,
 cd_sub(1, X[5][5], X[5][6]),
 X[5][7] + X[6][7] == 11,
 X[6][0] + X[7][0] + X[8][0] + X[8][1] + X[8][2] == 26,
 X[6][2] == 1,
 X[6][3] * X[7][3] == 16,
 X[6][4] == 6,
 X[6][5] + X[7][5] == 12,
 X[6][6] == 7,
 X[6][8] + X[7][8] + X[8][8] + X[8][7] + X[8][6] == 25,
 cd_sub(1, X[7][1], X[7][2]),
 X[7][4] * X[8][4] * X[8][3] * X[8][5] == 378,
 X[7][6] * X[7][7] == 3,
]

def solveCalcudoku(puzzle, n):
 X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(n)] for i in
range(n)]

 # each cell contains a value in {1, ..., 9}
 cells_c = [And(1 <= X[i][j], X[i][j] <= n) for i in range(n)
 for j in range(n)]

 # each row contains a digit at most once
 rows_c = [Distinct(X[i]) for i in range(n)]

47/116

 # each column contains a digit at most once
 cols_c = [Distinct([X[i][j] for i in range(n)]) for j in range(n)]

 calcudoku_c = cells_c + rows_c + cols_c + list(map(And, puzzle(X)))

 s = Solver()
 s.add(calcudoku_c)
 if s.check() == sat:
 m = s.model()
 print("Here is the solution")
 print_grid(m, X, n, n)
 else:
 print("Failed to solve the puzzle")

solveCalcudoku(hardest_calcudoku, 9)

11.2 Solution
Here is the solution

9 2 7 3 5 1 4 6 8
2 9 3 6 4 7 5 8 1
1 7 8 5 2 3 9 4 6
6 1 9 4 8 5 2 7 3
7 8 2 1 9 6 3 5 4
3 4 6 7 1 9 8 2 5
5 3 1 8 6 4 7 9 2
4 6 5 2 7 8 1 3 9
8 5 4 9 3 2 6 1 7

48/116

12 Unusual Crossword
Here is an unusual crossword based on the first 30 digits of 𝜋.

Figure 25: The Pi Crossword

12.1 Across
1.A contiguous subsequence of digits from

(iii) 14159265358979323846264338328

distinct from all the other answers (ignore the decimal point).

5.Same clue as above.

6.Same clue as above.

7.Same clue as above.

9.Same clue as above.

12.2 Down
1.Same clue as above.

2.Same clue as above.

49/116

3.Same clue as above.

4.Same clue as above.

5.Same clue as above.

8.Same clue as above.

Source. Composed by Johan de Ruiter for Pi Day, March 14, 2021;

12.3 Python code
Here is the code for solving the puzzle:

from itertools import product
pi30 = "314159265358979323846264338328"
ss = {}
for l in range(2, 6):
 ss[l] = [pi30[i:i+l] for i in range(0,30-l+1)]

for a1,a5,a6,a7,a9 in product(*[ss[4],ss[5],ss[4],ss[5],ss[4]]):
 d1 = "".join([a1[0],a5[1],a6[1],a7[1],a9[0]])
 d2 = "".join([a1[1],a5[2],a6[2],a7[2],a9[1]])
 d3 = "".join([a1[2],a5[3],a6[3],a7[3],a9[2]])
 d5 = "".join([a5[0],a6[0],a7[0]])
 d8 = "".join([a1[3],a5[4]])
 d9 = "".join([a7[4],a9[3]])
 if a1 != a6 and a6!= a9 and a1 != a9 and a5 != a7 and \
 d1 != d2 and d1 != d3 and d2 != d3 and \
 d1 != a5 and d1 != a7 and \
 d2 != a5 and d2 != a7 and \
 d3 != a5 and d3 != a7 and \
 d8 != d9 and \
 d5 in ss[3] and \
 d1 in ss[5] and \
 d2 in ss[5] and \
 d3 in ss[5] and \
 d8 in ss[2] and \
 d9 in ss[2]:
 print("x" + a1)
 print(a5)
 print(a6 +"x")
 print(a7)
 print("x"+a9)

Here is the solution:

x 2 6 4 3
2 6 5 3 5
6 4 3 3 x
5 3 5 8 9
x 3 8 3 2

50/116

13 The Riddle of the Pilgrims
The Canterbury Puzzles is a delightful collection of posers based on the
exploits of the same group of pilgrims introduced by Geoffrey Chaucer in The
Canterbury Tales. The anthology was compiled by the English puzzlist Henry
Ernest Dudeney and first published in 1907. All the puzzles are mathematical in
nature and many of them may be used to illustrate O.R. techniques. The
following riddle, taken from the chapter entitled ‘The Merry Monks of
Riddlewell’ is a classical I.P. allocation problem.

> One day, when the monks were seated at their repast, the Abbot announced
that a messenger had that morning brought news that a number of pilgrims
were on the road and would require their hospitality. "You will put them," he
said, "in the square dormitory that has two floors with eight rooms on each
floor. There must be eleven persons sleeping on each side of the building, and
twice as many on the upper floor as the lower floor. Of course every room must
be occupied, and you know my rule that not more than three persons may
occupy the same room." I give a plan of the two floors, from which it will be
seen that the sixteen rooms are approached by a well staircase in the centre.
After the monks had solved this little problem of accommodation, the pilgrims
arrived, when it was found that they were three more in number than was at
first stated. This necessitated a reconsideration of the question, but the wily
monks succeeded in getting over the new difficulty without breaking the
Abbot’s rules. The curious point of this puzzle is to discover the total number of
pilgrims.

Figure 26:

13.1 Model
The monks were required to perform two allocations of pilgrims each fulfilling
the Abbot’s requirements and with a difference of three pilgrims in total
between each allocation. On their behalf, we therefore define variables as
follows

𝑋𝑖𝑗𝑘𝑚 ∈ ℤ +, for 𝑖 = 1...𝑛, 𝑗 = 1...𝑓, 𝑘 = 1...𝑟, 𝑚 = 1...𝑜 (13.1)

where 𝑛 = 2 (allocations), 𝑓 = 2 (floors), 𝑟 = 3 (rows) and 𝑐 = 3 (columns).

Maximize/minimize the number of pilgrims in the final allocation. This is to
demonstrate that the solution to the puzzle is unique.

max ∑
𝑓

𝑗=1
∑

𝑟

𝑘=1
∑

𝑐

𝑚=1
𝑋2𝑗𝑘𝑚 (13.2)

51/116

(i) Three more pilgrims in final allocation than in initial allocation

∑
𝑓

𝑗=1
∑

𝑟

𝑘=1
∑

𝑐

𝑚=1
𝑋1𝑗𝑘𝑚 + 3 = ∑

𝑓

𝑗=1
∑

𝑟

𝑘=1
∑

𝑐

𝑚=1
𝑋2𝑗𝑘𝑚 (13.3)

(ii) Twice as many pilgrims on upper floor than lower floor in both

allocations

2 ∑
𝑟

𝑘=1
∑

𝑐

𝑚=1
𝑋𝑖1𝑘𝑚 = ∑

𝑟

𝑘=1
∑

𝑐

𝑚=1
𝑋𝑖2𝑘𝑚, for 𝑖 = 1...𝑛 (13.4)

(iii) Eleven pilgrims in first and third rows (i.e. front and back sides)

∑
𝑓

𝑗=1
∑

𝑐

𝑚=1
𝑋𝑖𝑗𝑘𝑚 = 11, for 𝑖 = 1...𝑛, 𝑘 = 1...𝑟, 𝑘 ≠ 2 (13.5)

(iv) Eleven pilgrims in first and third columns (i.e. left and right

sides)

∑
𝑓

𝑗=1
∑

𝑟

𝑘=1
𝑋𝑖𝑗𝑘𝑚 = 11, for 𝑖 = 1...𝑛, 𝑚 = 1...𝑐, 𝑚 ≠ 2 (13.6)

(v) Each room is atleast oocupied by at least one and no more than three

pilgrims

1 ≤ 𝑋𝑖𝑗𝑘𝑚 ≤ 3, for 𝑖 = 1...𝑛, 𝑗 = 1...𝑓, 𝑘 = 1...𝑟, 𝑚 = 1...𝑐, 𝑘 ≠ 2 ∨ 𝑚 ≠ 2(13.7)

(vi) No pilgrims allocated to the center cells (i.e. well stair case)

𝑋𝑖𝑗22 = 0, for 𝑖 = 1...𝑛, 𝑗 = 1...𝑓 (13.8)

13.2 Python code
The Python code for solving the puzzle using Google OR-Tools library is given
below:

from ortools.linear_solver import pywraplp

def riddle_of_pilgrims():
 n, f, r, c = 2, 2, 3, 3
 solver = pywraplp.Solver.CreateSolver('SCIP')
 x = {(i,j,k,m): solver.IntVar(0, 3, 'x[%i][%i][%i][%i]' %
(i,j,k,m))
 for m in range(c) for k in range(r)
 for j in range(f) for i in range(n)}

 solver.Add(sum([x[(0,j,k,m)] for j in range(f)
 for k in range(r) for m in range(c)]) + 3 ==
 sum([x[(1,j,k,m)] for j in range(f)
 for k in range(r) for m in range(c)]))

 for i in range(n):

52/116

 solver.Add(2*sum([x[(i,0,k,m)] for k in range(r) for m in
range(c)]) ==
 sum([x[(i,1,k,m)] for k in range(r) for m in range(c)]))

 for i in range(n):
 for k in set(range(r)) - {1}:
 solver.Add(sum([x[(i,j,k,m)] for j in range(f) for m in
range(c)]) == 11)

 for i in range(n):
 for m in set(range(c)) - {1}:
 solver.Add(sum([x[(i,j,k,m)] for j in range(f) for k in
range(r)]) == 11)

 for i in range(n):
 for j in range(f):
 for k in set(range(c)):
 for m in set(range(c)):
 if (k,m) != (1,1):
 solver.Add(x[(i,j,k,m)] >= 1)
 solver.Add(x[(i,j,k,m)] <= 3)

 for i in range(n):
 for j in range(f):
 solver.Add(x[(i,j, 1, 1)] == 0)

 solver.Minimize(sum([x[(1,j,k,m)] for j in range(f)
 for k in range(r) for m in range(c)]))

 status = solver.Solve()
 if status == pywraplp.Solver.OPTIMAL:
 return solver.Objective().Value()
 else:
 return -1

print(riddle_of_pilgrims())

Using the code above, we see that the total number of pilgrims is 𝟑𝟎.

53/116

14 The Langford Problem
In combinatorial mathematics, a 𝐋𝐚𝐧𝐠𝐟𝐨𝐫𝐝 𝐩𝐚𝐢𝐫𝐢𝐧𝐠, also called a
𝐋𝐚𝐧𝐠𝐟𝐨𝐫𝐝 𝐬𝐞𝐪𝐮𝐞𝐧𝐜𝐞, is a permutation of the sequence of 2𝑛 numbers
1, 1, 2, 2, ..., 𝑛, 𝑛 in which the two 1s are one unit apart, the two 2s are two
units apart, and more generally the two copies of each number 𝑘 are 𝑘 units
apart. Langford pairings are named after C. Dudley Langford, who posed the
problem of constructing them in 1958. 𝐋𝐚𝐧𝐠𝐟𝐨𝐫𝐝’𝐬 𝐩𝐫𝐨𝐛𝐥𝐞𝐦 is the task of
finding Langford pairings 𝐿(𝑛) for a given value of 𝑛.

14.1 Beautiful analytical solution

For the positive cases (𝑛 = 4𝑘 or 4𝑘 + 3) an algorithm for calculating the
sequence can be found [here](https://susam.in/blog/langford-pairing.html).
This beautiful algorithm was discovered by Roy Davies in 1959.

Here are the details, where 𝑅 denotes the reversal of a sequence.

𝑥 = 𝐶𝑒𝑖𝑙𝑖𝑛𝑔[𝑛/4]

{𝑎, 𝑏, 𝑐, 𝑑} = {2𝑥 − 1, 4𝑥 − 2, 4𝑥 − 1, 4𝑥}

𝑝 = odds in [1, 𝑎 − 1]

𝑞 = evens in [2, 𝑎 − 1]

𝑟 = odds in [𝑎 + 2, 𝑏 − 1]

𝑠 = evens in [𝑎 + 1, 𝑏 − 1]

(14.1)

If 4 divides 𝑛, the sequence is
{𝑅[𝑠], 𝑅[𝑝], 𝑏, 𝑝, 𝑐, 𝑠, 𝑑, 𝑅[𝑟], 𝑅[𝑞], 𝑏, 𝑎, 𝑞, 𝑐, 𝑟, 𝑎, 𝑑}.

If 𝑛 ≡ 3(mod 4), it is {𝑅[𝑠], 𝑅[𝑝], 𝑏, 𝑝, 𝑐, 𝑠, 𝑎, 𝑅[𝑟], 𝑅[𝑞], 𝑏, 𝑎, 𝑞, 𝑐, 𝑟}.

The Python code implementing the above algorithm is given below

from math import ceil

def R(l):
 return list(reversed(l))

def langford_davies(n):
 x = ceil(n/4)
 a, b, c, d = 2*x-1, 4*x-2, 4*x-1, 4*x
 p = [i for i in range(1, a) if i % 2==1]
 q = [i for i in range(2, a) if i % 2==0]
 r = [i for i in range(a+2, b) if i % 2==1]
 s = [i for i in range(a+1, b) if i % 2==0]
 if n%4 == 0:
 return R(s) + R(p) + [b] + p + [c] + s + [d] + R(r) + R(q) +
[b,a] + q + [c] + r + [a, d]
 if n%4 == 3:
 return R(s) + R(p) + [b] + p + [c] + s + [a] + R(r) + R(q) +
[b,a] + q + [c] + r
 return None

54/116

14.2 Model using Integer Programming
Another way to solve the Langford problem is to treat it as a set covering
problem. To visualize this we make use of the following array for 𝐿(3):

- 1 2 3 4 5 6

1 1 1

2 1 1

3 1 1

4 1 1

5 2 2

6 2 2

7 2 2

8 3 3

9 3 3

To solve the problem, we need to select one row for the 1’s in the sequence, one
row for the 2’s and one row for the 3’s, such that if we stack these rows on top
of each other, no column contains more than one number.

In case of 𝐿(𝑛) it is easy to see that the number of columns in the matrix will
be 2𝑛 and the number of rows will be 𝑟 = 2𝑛 − 2 + ... + 𝑛 − 1. Let
{𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑟} be the set of decision variables, one for each row in the matrix
such that 𝑥𝑖 ∈ {0, 1}. We have the following constraints:

(i) We choose only 1 row among all rows containing the number 𝑘 in

the matrix where 1 ≤ 𝑘 ≤ 𝑛. 2. For each column, we choose only 1 row among
all rows containing non zero values.

14.3 Python code using integer programming

The Python code implementing the above model using the Google 𝐎𝐑-𝐓𝐨𝐨𝐥𝐬
library is given below:

from ortools.linear_solver import pywraplp

def langford_ip(n):
 solver = pywraplp.Solver.CreateSolver('SCIP')

 n_rows, n_cols = sum(range(n-1, 2*n-1)), 2*n
 matrix = [[0 for j in range(n_cols)] for i in range(n_rows)]
 out = [0 for i in range(n_cols)]

 # setting up the covering matrix
 j = 0
 for i in range(n):
 for k in range(2*n-i-2):
 matrix[j][k] = i + 1

55/116

 matrix[j][k+i+2] = i + 1
 j += 1

 x = [solver.IntVar(0, 1, 'x[%i]' % j) for j in range(n_rows)]

 # row constraints
 j = 0
 for i in range(n):
 solver.Add(sum([x[k] for k in range(j, j + 2*n-i-2)])==1)
 j += 2*n-i-2

 # column constraints
 for i in range(n_cols):
 inds = []
 for j in range(n_rows):
 if matrix[j][i]:
 inds.append(j)
 solver.Add(sum([x[k] for k in inds])==1)

 solver.Minimize(sum([x[i] for i in range(n_rows)]))

 status = solver.Solve()
 if status == pywraplp.Solver.OPTIMAL:
 for i in range(n_rows):
 if x[i].solution_value():
 for j in range(n_cols):
 out[j] += matrix[i][j]
 return out
 else:
 return None

14.4 Model using Constraint Programming

Let (𝑥𝑖𝑠, 𝑥𝑖𝑒) be the tuple of decision variables indicating the starting and
ending position of number 𝑖 in the Langford sequence. The decision variables
need to satisfy the following constraints:

1 ≤ 𝑥𝑖𝑠, 𝑥𝑖𝑒 ≤ 2𝑛, 1 ≤ 𝑖 ≤ 𝑛

𝑥𝑖𝑒 = 𝑥𝑖𝑠 + (𝑖 + 1), 1 ≤ 𝑖 ≤ 𝑛
(14.1)

All members of the set {𝑥𝑖𝑡 | 1 ≤ 𝑖 ≤ 𝑛, 𝑡 ∈ {𝑠, 𝑒}} are different.

14.5 Python code using constraint programming
Here is the Python code implementing the above model using the fantastic
Google 𝐎𝐑-𝐓𝐨𝐨𝐥𝐬 library:

from ortools.sat.python import cp_model
from collections import defaultdict

def langford_seq_checker(seq):
 if not seq:
 return False
 pos_map = defaultdict(list)

56/116

 for i, n in enumerate(seq):
 pos_map[n].append(i)
 for n,p in pos_map.items():
 if len(p) != 2:
 return False
 if (p[1] - p[0]) != n + 1:
 return False
 return True

def langford_cp(n):
 model = cp_model.CpModel()
 x = [[model.NewIntVar(1, 2*n, 'x[%i][%i]' % (i,j)) for j in
range(2)] for i in range(n)]

 model.AddAllDifferent([x[i][j] for i in range(n) for j in
range(2)])
 for i in range(n):
 model.Add(x[i][1] - x[i][0] == i+2)

 solver = cp_model.CpSolver()
 status = solver.Solve(model)
 if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
 out = [0]*(2*n+1)
 for i in range(n):
 for j in range(2):
 out[solver.Value(x[i][j])] = i+1
 return out[1:]
 else:
 return None

14.6 Solution

Here is the sequence 𝐿(100) calculated using the above code:

[51, 79, 80, 82, 1, 30, 1, 64, 70, 87, 95, 50, 21, 66, 33, 4, 29, 97,
20, 15, 4, 69, 22,
52, 59, 28, 100, 81, 46, 26, 36, 57, 49, 8, 21, 15, 30, 91, 31, 20, 83,
86, 8, 34, 23, 22,
29, 68, 33, 40, 53, 14, 51, 72, 28, 84, 26, 74, 89, 63, 32, 55, 50, 75,
98, 76, 14, 36, 23,
 7, 31, 48, 64, 93, 96, 46, 52, 7, 34, 70, 66, 79, 49, 80, 59, 65, 82,
92, 71, 57, 40, 69,
 94, 32, 99, 78, 61, 87, 67, 90, 6, 43, 62, 88, 53, 19, 95, 6, 60, 81,
35, 77, 24, 85, 73,
97, 68, 55, 56, 11, 48, 54, 58, 63, 83, 19, 72, 100, 86, 91, 25, 11,
74, 13, 27, 47, 17,
24, 45, 75, 84, 10, 76, 38, 41, 43, 35, 13, 89, 9, 44, 65, 10, 42, 17,
37, 25, 39, 61, 9,
71, 16, 27, 98, 12, 62, 67, 93, 3, 60, 2, 96, 3, 2, 78, 56, 54, 12, 16,
18, 92, 58, 38, 47,
45, 5, 41, 94, 73, 77, 90, 5, 88, 37, 99, 44, 42, 39, 18, 85]

57/116

15 Skyscrapers
Fill the grid with numbers, so that every number appears only once in every
row and column. The numbers used range from 1 upto the length of each row
or column. Imagine the grid is the aerial view of a city block of skyscrapers of
varying heights, one within each cell in the grid. Each skyscraper is to be
represented as a number indicating its height.A number outside the grid
describes how many skyscrapers can be seen along that row or up/down that
column from the perspective of that number on the ground. You can only see a
skyscraper if smaller skyscrapers are in front of it; you cannot see one if a
taller skyscraper is in front of it, blocking the view. Here is a 6 × 6 Skyscraper
puzzle

Figure 27:

15.1 Python code
from z3 import *
from itertools import permutations
from collections import defaultdict

class SkyscrapersSolver:
 def __init__(self, n, puzzle):
 self.n = n
 self.input = puzzle
 self.perms = defaultdict(set)
 self.X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(n)]
 for i in range(n)]

58/116

 self.s = Solver()
 self.s.add([And(1 <= self.X[i][j], self.X[i][j]<= n) for i in
range(n) for j in range(n)])
 for i in range(n):
 self.s.add(And(Distinct(self.X[i])))
 for j in range(n):
 self.s.add(And(Distinct([self.X[i][j] for i in range(n)])))

 def classify_permutations(self):
 def num_of_visible_ss(arr, reverse=False):
 if reverse:
 arr = arr[-1::-1]
 v = 0
 for i in range(0, len(arr)):
 if arr[i] >= max(arr[0:i+1]):
 v += 1
 return v

 for p in permutations(range(1, self.n+1)):
 self.perms[("R", num_of_visible_ss(p))].add(p)
 self.perms[("L", num_of_visible_ss(p,
reverse=True))].add(p)

 def set_constraints(self):
 gl_consts = []
 for dr, rn, ns in self.input:
 if dr == "R" or dr == "L":
 poss_perms = []
 for p in self.perms[(dr,ns)]:
 poss_perms.append(And([self.X[rn-1][i] == v for i,v
in enumerate(p)]))
 gl_consts.append(Or(poss_perms))
 else:
 mdr = "R" if dr == "D" else "L"
 poss_perms = []
 for p in self.perms[(mdr, ns)]:
 poss_perms.append(And([self.X[i][rn-1] == v for i,v
in enumerate(p)]))
 gl_consts.append(Or(poss_perms))
 self.s.add(And(gl_consts))

 def output_solution(self):
 m = self.s.model()
 for i in range(self.n):
 print(" ".join(['{:>2}'.format(str(m.evaluate(self.X[i]
[j])))
 for j in range(self.n)]))

 def solve(self):
 self.classify_permutations()
 self.set_constraints()
 if self.s.check() == sat:
 self.output_solution()

59/116

 else:
 print(self.s)
 print("Failed to solve.")

puzzle = ([("R",3,4),("R",6,3),("D",3,2),("D",4,3),("D",6,2),("L",2,2),
("L",5,3),
 ("U",2,4),("U",4,4),("U",5,3)])
sss = SkyscrapersSolver(6, puzzle)
sss.solve()

15.2 Solution
Here is the solution to the puzzle above

2 6 4 1 3 5

4 3 2 5 6 1

1 2 3 6 5 4

6 5 1 4 2 3

5 4 6 3 1 2

3 1 5 2 4 6

60/116

16 Numbrix
Just fill in the puzzle so the consecutive numbers follow a horizontal or vertical
path (no diagonals).Here is a hard numbrix puzzle

Figure 28:

16.1 Python code
from z3 import *
import re
from itertools import combinations

def Abs(x):
 return If(x >=0, x, -x)

class NumbricksSolver:
 def __init__(self, n):
 self.n = n
 self.X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(n)]
 for i in range(n)]
 self.s = Solver()
 self.s.add([And(1 <= self.X[i][j], self.X[i][j]<= n*n) for i in
range(n) for j in range(n)])
 self.s.add([And(Distinct([self.X[i][j] for i in range(n) for j

61/116

in range(n)]))])
 for i in range(n):
 for j in range(n):
 ns = []
 if (i - 1) >= 0:
 ns.append(self.X[i-1][j])
 if (i + 1) < n:
 ns.append(self.X[i+1][j])
 if (j - 1) >= 0:
 ns.append(self.X[i][j-1])
 if (j + 1) < n:
 ns.append(self.X[i][j+1])
 c_n1_ne = Or(*[And(*[Abs(self.X[i][j]-nb)==1 for nb in
nbs])
 for nbs in combinations(ns, 2)])
 c_1_or_e = Or(*[Abs(self.X[i][j]-nb)==1 for nb in ns])
 self.s.add(If(self.X[i][j] == 1, c_1_or_e, If(self.X[i]
[j] == n*n, c_1_or_e, c_n1_ne)))

 def load_puzzle(self, puzzle):
 for i, line in enumerate(re.split("\n", puzzle)):
 for j, v in enumerate(re.split(",", line)):
 if v != "_":
 self.s.add(And(self.X[i][j] == int(v)))

 def output_solution(self):
 m = self.s.model()
 for i in range(self.n):
 print(" ".join(['{:>2}'.format(str(m.evaluate(self.X[i]
[j])))
 for j in range(self.n)]))
 print("\n")

 def solve(self, puzzle):
 self.load_puzzle(puzzle)
 if self.s.check() == sat:
 self.output_solution()
 else:
 print(self.s)
 print("Failed to solve.")

puzzle = '''9,_,11,_,19,_,77,_,73
,,_,_,_,_,_,_,_
7,_,_,_,_,_,_,_,71
,,_,_,_,_,_,_,_
31,_,_,_,_,_,_,_,67
,,_,_,_,_,_,_,_
35,_,_,_,_,_,_,_,57
,,_,_,_,_,_,_,_
37,_,41,_,45,_,47,_,55'''

ns = NumbricksSolver(9)
ns.solve(puzzle)

62/116

16.2 Solution
Here is the solution to the above puzzle

9 10 11 18 19 78 77 74 73

 8 13 12 17 20 79 76 75 72

 7 14 15 16 21 80 81 70 71

 6 5 4 3 22 63 64 69 68

31 30 29 2 23 62 65 66 67

32 33 28 1 24 61 60 59 58

35 34 27 26 25 50 51 52 57

36 39 40 43 44 49 48 53 56

37 38 41 42 45 46 47 54 55

63/116

17 Kakuro
Kakuro is like a crossword puzzle with numbers. Each "word" must add up to
the number provided in the clue above it or to the left. Words can only use the
numbers 1 through 9, and a given number can only be used once in a word. Here
is a hard Kakuro puzzle

Figure 29:

17.1 Python code
Here is how the above puzzle is encoded:

x,38|,29|,x,10|,14|,x,21|,16|,14|
|14,_,_,|6,_,_,|16,_,_,_
|16,_,_,5|13,_,_,13|23,_,_,_
|26,_,_,_,_,12|16,_,_,33|,31|
|10,_,_,_,21|15,_,_,_,_,_
|6,_,_,14|22,_,_,_,9|15,_,_
|16,_,_,_,_,_,12|7,_,_,_
x,17|,5|9,_,_,8|30,_,_,_,_
|11,_,_,_,|3,_,_,|17,_,_
|19,_,_,_,|9,_,_,|3,_,_

Here is the python code using Z3

64/116

import sys
from z3 import *

class KakuroSolver:
 def __init__(self, fp):
 self.inp, self.vars = self.load_puzzle(fp)
 self.rows = len(self.inp)
 self.cols = len(self.inp[0])
 self.X_map = {(i, j): Int("x_%s_%s" % (i+1, j+1)) for (i, j) in
self.vars}
 self.s = Solver()
 self.s.add([And(1 <= v, v <= 9) for v in self.X_map.values()])

 def load_puzzle(self, fp):
 X = []
 with(open(fp, "r")) as f:
 for line in f.readlines():
 X.append(line.strip("\n").split(","))
 var_pos = [(i, j) for (i, l) in enumerate(X) for (j, t) in
enumerate(l) if t == "_"]
 return X, var_pos

 def set_constraints(self):
 for i in range(self.rows):
 for j in range(self.cols):
 if "|" in self.inp[i][j]:
 c, r = self.inp[i][j].split("|")
 if r:
 bvars, r_p = [], j+1
 while (r_p < self.cols and self.inp[i][r_p] ==
"_"):
 bvars.append(self.X_map[(i, r_p)])
 r_p += 1
 self.s.add(And(Distinct(bvars)))
 self.s.add(And(sum(bvars) == int(r)))
 if c:
 bvars, c_p = [], i+1
 while (c_p <self.rows and self.inp[c_p][j] ==
"_"):
 bvars.append(self.X_map[(c_p, j)])
 c_p += 1
 self.s.add(And(Distinct(bvars)))
 self.s.add(And(sum(bvars) == int(c)))

 def print_grid(self):
 print("Here is the solution")
 m = self.s.model()
 for i in range(self.rows):
 print(" ".join(['{:>3}'.format(str(m.eval(self.X_map[(i,
j)]))) if self.inp[i][j] == "_" else '{:>3}'.format(" ")
 for j in range(self.cols)]))

 def solve(self):

65/116

 self.set_constraints()
 if self.s.check() == sat:
 self.print_grid()
 else:
 print("Failed to solve the puzzle")

if __name__ == "__main__":
 ks = KakuroSolver(sys.argv[1])
 ks.solve()

66/116

18 Kakurasu
Kakurasu is played on a rectangular grid with no standard size. The goal is to
make some of the cells black in such a way that:

(i) The black cells on each row sum up to the number on the right.

(ii) The black cells on each column sum up to the number on the bottom.

(iii) If a black cell is first on its row/column its value is 1. If it is second its value
is 2 etc.

Here is a 9 × 9 hard Kakurasu puzzle

Figure 30:

18.1 Python code
from z3 import *
import seaborn as sns
sns.set()

class KakurasuSolver:
 def __init__(self, n, puzzle, outputfilename):
 self.n = n
 self.input = puzzle
 self.output = outputfilename
 self.X = [[Int("x_%s_%s" % (i+1, j+1)) for j in range(n)]
 for i in range(n)]
 self.s = Solver()
 self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 1) for i in
range(n) for j in range(n)])

 def set_constraints(self):
 for d, n, s in self.input:
 if d == "C":
 self.s.add(And(sum([(i+1)*self.X[i][n-1] for i in
range(0,self.n)]) == s))
 if d == "R":
 self.s.add(And(sum([(i+1)*self.X[n-1][i] for i in

67/116

range(0,self.n)]) == s))

 def output_solution(self):
 m = self.s.model()
 data = [[int(str(m.evaluate(self.X[i][j])))*-1 for j in
range(self.n)] for i in range(self.n)]
 snsplot = sns.heatmap(data, square=True, linewidths=1.0,
xticklabels=False, yticklabels=False, cbar=False)
 snsplot.get_figure().savefig(self.outputfilename + ".png")

 def solve(self):
 self.set_constraints()
 if self.s.check() == sat:
 self.output_solution()
 else:
 print(self.s)
 print("Failed to solve.")

puzzle = [
 ("C",1,18),
 ("C",2,4),
 ("C",3,14),
 ("C",4,23),
 ("C",5,8),
 ("C",6,20),
 ("C",7,24),
 ("C",8,39),
 ("C",9,33),
 ("R",1,8),
 ("R",2,27),
 ("R",3,23),
 ("R",4,33),
 ("R",5,34),
 ("R",6,1),
 ("R",7,28),
 ("R",8,24),
 ("R",9,30),
]

outputfilename = "kakurasu_sol"
ks = KakurasuSolver(9, puzzle, outputfilename)
ks.solve()

18.2 Solution
The solution for above puzzle is given below

68/116

Figure 31:

69/116

19 3-In-A-Row puzzle
Can you fill the grid with Blue and White squares without creating a 3-In-A-
Row of the same colour? Each row and column has an equal number of Blue
and White squares. Blue is represented by "X" and white is represented by "O" in
the picture below

Figure 32:

19.1 Python code
from z3 import *

class ThreeInARowSolver:
 def __init__(self, n, puzzle):
 self.n = n
 self.input = puzzle
 self.X = [[Int("x_%s_%s" % (i, j)) for j in range(n)]
 for i in range(n)]
 self.s = Solver()
 self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 1) for i in
range(n) for j in range(n)])

 def set_constraints(self):
 for i,j,v in self.input:
 self.s.add(And(self.X[i][j] == v))
 for i in range(self.n):
 self.s.add(And(sum(self.X[i]) == self.n/2))
 for j in range(self.n):
 self.s.add(And(sum([self.X[i][j] for i in range(self.n)])
== self.n/2))
 for i in range(0, self.n):
 for j in range(0, self.n-2):
 self.s.add(And(self.X[i][j] + self.X[i][j+1] +
self.X[i][j+2] != 0))
 self.s.add(And(self.X[i][j] + self.X[i][j+1] +
self.X[i][j+2] != 3))

70/116

 for j in range(0, self.n):
 for i in range(0, self.n-2):
 self.s.add(And(self.X[i][j] + self.X[i+1][j] +
self.X[i+2][j] != 0))
 self.s.add(And(self.X[i][j] + self.X[i+1][j] +
self.X[i+2][j] != 3))

 def output_solution(self):
 m = self.s.model()
 for i in range(self.n):
 print(" ".join(["X" if m.evaluate(self.X[i][j])==1 else "O"
for j in range(self.n)]))

 def solve(self):
 self.set_constraints()
 if self.s.check() == sat:
 self.output_solution()
 else:
 print(self.s)
 print("Failed to solve.")

""" The puzzle is encoded using a 1 for an X and an O for an O. The
positions of the X's and O's are captured as a list of 3-tuples (row,
column, symbol)."""

puzzle = [
 (0,4,1),
 (1,3,1),
 (3,5,1),
 (0,1,0),
 (2,5,0),
 (4,0,0),
 (5,0,0),
 (5,1,0)
]

ts = ThreeInARowSolver(6, puzzle)
ts.solve()

19.2 Solution
X O X O X O
O X O X O X
X X O O X O
X O X O O X
O X O X X O
O O X X O X

71/116

20 Fish

20.1 The Situation
(i) There are 5 houses in five different colours.

(ii) In each house lives a person with a different nationality.

(iii) These five owners drink a certain type of beverage, smoke a certain brand
of cigar and keep a certain pet.

(iv) No owners have the same pet, smoke the same brand of cigar or drink the
same beverage.

The question is who owns the fish?

20.2 Hints
(i) The Brit lives in the red house.

(ii) The swede keeps dogs as pets.

(iii) The dane drinks tea.

(iv) The green house is on the left of the white house.

(v) The green house owner drinks coffee.

(vi) The person who smokes pallmall rears birds.

(vii) The owner of the yellow house smokes dunhill.

(viii) The man living in the centre house drinks milk.

(ix) The Norwegian lives in the first house.

(x) The man who smokes blends lives next to the one who keeps cats.

(xi) The man who keeps horses lives next to the man who smokes dunhill.

(xii) The owner who smokes bluemaster drinks beer.

(xiii) The German smokes prince.

(xiv) The Norwegian lives next to the blue house.

(xv) The man who smokes blends has a neighbour who drinks water.

20.3 Solution
The German owns the fish. Here is a possible assignment satisfying all the
constraints:

House Nationality Colour Pets Cigars Beverages

1 Norweigan Green Bird Pallmall Coffee

2 German Blue Fish Prince Water

3 Brit Red Horse Blends Milk

4 Dane Yellow Cat Dunhill Tea

72/116

5 Swede White Dog Bluemaster Beer

20.4 Python code
from z3 import *

house, nat, col, pet, cig, bev = [0,1,2,3,4,5]
houses = {0:"House1", 1:"House2", 2:"House3", 3:"House4", 4:"House5"}

red, blue, green, yellow, white = [0,1,2,3,4]
colours = {red:"Red", blue: "Blue", green:"Green", yellow:"Yellow",
white:"White"}

brit, swede, dane, german, norwegian = [0,1,2,3,4]
nationality = {brit:"Brit", swede:"Swede", dane:"Dane",
german:"German", norwegian:"Norw"}

fish, cat, bird, dog, horse = [0,1,2,3,4]
pets = {fish:"Fish", cat:"Cat", bird:"Bird", dog:"Dog", horse:"Horse"}

pallmall, dunhill, bluemaster, blends, prince = [0,1,2,3,4]
cigars = {pallmall:"Pallmall", dunhill:"Dunhill",
bluemaster:"Bluemaster", blends:"Blends", prince:"Prince"}

milk, tea, coffee, beer, water = [0,1,2,3,4]
bevs = {milk:"Milk", tea:"Tea", coffee:"Coffee", beer:"Beer",
water:"Water"}

columns = {house:houses, nat:nationality, col:colours, pet:pets,
cig:cigars, bev:bevs}

def Abs(x):
 return If(x >=0, x, -x)

class AssignmentPuzzleSolver:
 def __init__(self):
 self.X = [[Int("x_%s_%s" % (i, j)) for j in range(6)]
 for i in range(5)]
 self.s = Solver()
 self.s.add([And(0 <= self.X[i][j], self.X[i][j]<= 4)
 for i in range(5) for j in range(6)])

 def set_constraints(self):
 cons = []

 # there is no repetition along each dimension
 cols_c = [Distinct([self.X[i][j] for i in range(5)]) for j in
range(6)]
 cons.append(And(cols_c))

 # The brit lives in the red house
 cons1 = Or([And(self.X[i][nat] == brit, self.X[i][col] == red)

73/116

 for i in range(5)])
 cons.append(cons1)

 # The swede keeps dogs as pets
 cons2 = Or([And(self.X[i][nat] == swede, self.X[i][pet] == dog)
 for i in range(5)])
 cons.append(cons2)

 # The dane drinks tea
 cons3 = Or([And(self.X[i][nat] == dane, self.X[i][bev] == tea)
 for i in range(5)])
 cons.append(cons3)

 # The green house is on the left of the white house
 cons4 = []
 for i in range(4):
 for j in range(i+1,5):
 cons4.append(And(self.X[i][col] == green, self.X[j]
[col] == white))
 cons4 = Or(cons4)
 cons.append(cons4)

 # The green house owner drinks coffee
 cons5 = Or([And(self.X[i][col] == green, self.X[i][bev] ==
coffee)
 for i in range(5)])
 cons.append(cons5)

 # The person who smokes pallmall rears birds
 cons6 = Or([And(self.X[i][cig] == pallmall, self.X[i][pet] ==
bird)
 for i in range(5)])
 cons.append(cons6)

 # The owner of the yellow house smokes dunhill
 cons7 = Or([And(self.X[i][col] == yellow, self.X[i][cig] ==
dunhill)
 for i in range(5)])
 cons.append(cons7)

 # The man living in the centre house drinks milk
 cons8 = Or([And(self.X[i][house] == 2, self.X[i][bev] == milk)
 for i in range(5)])
 cons.append(cons8)

 # The Norwegian lives in the first house
 cons9 = Or([And(self.X[i][nat] == norwegian, self.X[i][house]
== 0)
 for i in range(5)])
 cons.append(cons9)

 # The man who smokes blends lives next to the one who keeps
cats

74/116

 cons10 = []
 for i in range(5):
 for j in range(5):
 if i != j:
 cons10.append(And(self.X[i][cig] == blends,
self.X[j][pet] == cat,
 Abs(self.X[i][house]-self.X[j][house]) == 1))
 cons10 = Or(cons10)
 cons.append(cons10)

 # The man who keeps horses lives next to the man who smokes
dunhill
 cons11 = []
 for i in range(5):
 for j in range(5):
 if i != j:
 cons11.append(And(self.X[i][pet] == horse,
self.X[j][cig] == dunhill,
 Abs(self.X[i][house]-
self.X[j][house]) == 1))
 cons11 = Or(cons11)
 cons.append(cons11)

 # The owner who smokes bluemaster drinks beer
 cons12 = Or([And(self.X[i][cig] == bluemaster,self.X[i][bev] ==
beer)
 for i in range(5)])
 cons.append(cons12)

 # The german smokes prince
 cons13 = Or([And(self.X[i][nat] == german, self.X[i][cig] ==
prince)
 for i in range(5)])
 cons.append(cons13)

 # The Norwegian lives next to the blue house
 cons14 = Or([And(self.X[i][house] == 1, self.X[i][col] == blue)
 for i in range(5)])
 cons.append(cons14)

 # The man who smokes blends has a neighbour who drinks water
 cons15 = []
 for i in range(5):
 for j in range(5):
 if i != j:
 cons15.append(And(self.X[i][cig] == blends,
self.X[j][bev] == water,
 Abs(self.X[i][house]-self.X[j][house])
== 1))
 cons15 = Or(cons15)
 cons.append(cons15)

 self.s.add(And(cons))

75/116

 def output_solution(self):
 m = self.s.model()

print("\t".join(["House","Nationality","Colour","Pets","Cigars","Beverages"]))
 for i in range(5):
 print("\t".join([columns[j][m.evaluate(self.X[i]
[j]).as_long()] for j in range(6)]))

 def solve(self):
 self.set_constraints()
 if self.s.check() == sat:
 self.output_solution()
 else:
 print(self.s)
 print("Failed to solve.")

s = AssignmentPuzzleSolver()
s.solve()

76/116

21 Flowfree
Flowfree is a puzzle game that is available as an android/ios app and online.
The game is played on a square grid with 𝑛 pairs of same-colored squares. The
objective is to join each of the same-colored pairs by means of an unbroken
chain of squares of the same color. A typical starting position together with the
solution is in shown in the figure below:

Figure 33:

21.1 Model

Define the sets 𝑀 = 1…𝑚 and 𝑁 = 1…𝑛, where 𝑚 is the size of the grid and
𝑛 is the number of pairs of same-colored cells. Also define variables 𝑥𝑖𝑗𝑘 = 1 if
cell (𝑖, 𝑗) requires color 𝑘, otherwise 0, ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑁 and
parameters 𝑆𝑖𝑗𝑘 = 1 if cell (𝑖, 𝑗) has color 𝑘, otherwise 0. The conditions
required by the puzzle are enforced as follows.

(i) Ensure the solution is consistent with the starting configuration.

𝑥𝑖𝑗𝑘 ≥ 𝑆𝑖𝑗𝑘, ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑁 (21.1)

(ii) Each cell contains a single color.

∑
𝑘∈𝑁

𝑥𝑖𝑗𝑘 = 1, ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 (21.2)

(iii) Ensure a continuous chain for each color. This is done by ensuring

that the initially colored squares have exactly one adjacent square of the same
color and all other squares will have exactly two adjacent squares of the same
color. Define

77/116

𝑓(𝑥𝑖𝑗𝑘) = ∑
𝑖+1

𝑝=𝑖−1,𝑝≠𝑖,𝑝∈𝑀
𝑥𝑝𝑗𝑘 + ∑

𝑗+1

𝑞=𝑗−1,𝑞≠𝑗,𝑞∈𝑀
𝑥𝑖𝑞𝑘 + 𝑆𝑖𝑗𝑘

𝑓(𝑥𝑖𝑗𝑘) ≥ 2𝑥𝑖𝑗𝑘 − 5(1 − 𝑥𝑖𝑗𝑘), ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑁

𝑓(𝑥𝑖𝑗𝑘) ≤ 2𝑥𝑖𝑗𝑘 + 5(1 − 𝑥𝑖𝑗𝑘), ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑁

(21.3)

21.2 Python code
Here is the code for the above formulation and puzzle:

from ortools.sat.python import cp_model
from enum import IntEnum

class Color(IntEnum):
 YELLOW = 0,
 BROWN = 1,
 GREEN = 2,
 BLUE = 3

def puzzle():
 m, n = 5, 4
 s = {(i,j,k):0 for i in range(m) for j in range(m) for k in
range(n)}
 s[(0, 1, Color.YELLOW)], s[(4, 0, Color.YELLOW)] = 1, 1
 s[(0, 4, Color.BROWN)], s[(1, 1, Color.BROWN)] = 1, 1
 s[(3, 2, Color.BLUE)], s[(2, 4, Color.BLUE)] = 1, 1
 s[(1, 4, Color.GREEN)], s[(4, 4, Color.GREEN)] = 1, 1
 return m, n, s

def flowfree(puzzle):
 m, n, s = puzzle
 model = cp_model.CpModel()
 x = {(i,j,k): model.NewIntVar(0, 1, 'x(%i,%i,%i)' % (i,j,k))
 for i in range(m) for j in range(m) for k in range(n)}

 for i in range(m):
 for j in range(m):
 for k in range(n):
 model.Add(x[(i,j,k)] >= s[(i,j,k)])

 for i in range(m):
 for j in range(m):
 model.Add(sum(x[(i,j,k)] for k in range(n))==1)

 M = list(range(m))
 for i in range(m):
 for j in range(m):
 for k in range(n):
 f = s[(i,j,k)] + \
 sum(x[(p,j,k)] for p in range(i-1, i+2) if p != i
and p in M) + \
 sum(x[(i,q,k)] for q in range(j-1, j+2) if q != j

78/116

and q in M)
 model.Add(f >= 2*x[(i,j,k)]-5*(1-x[(i,j,k)]))
 model.Add(f <= 2*x[(i,j,k)]+5*(1-x[(i,j,k)]))

 solver = cp_model.CpSolver()
 status = solver.Solve(model)
 if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
 for i in range(m):
 print(" ".join(str(Color(k)).ljust(15) for j in range(m)
for k in range(n)
 if solver.Value(x[(i,j,k)]) != 0))
 else:
 print("Couldn't solve.")

flowfree(puzzle())

21.3 Solution
The output of the above program is as follows:

Color.YELLOW Color.YELLOW Color.BROWN Color.BROWN
Color.BROWN
Color.YELLOW Color.BROWN Color.BROWN Color.GREEN
Color.GREEN
Color.YELLOW Color.GREEN Color.GREEN Color.GREEN
Color.BLUE
Color.YELLOW Color.GREEN Color.BLUE Color.BLUE
Color.BLUE
Color.YELLOW Color.GREEN Color.GREEN Color.GREEN
Color.GREEN

Figure 34:

79/116

22 Ostomachion
The famous four-color theorem states, essentially, that you can color in the
regions of any map using at most four colors in such a way that no neighboring
regions share a color. A computer-based proof of the theorem was offered in
1976.

Some 2,200 years earlier, the legendary Greek mathematician Archimedes
described something called an Ostomachion. It’s a group of pieces, similar to
tangrams, that divides a 12-by-12 square into 14 regions. The object is to
rearrange the pieces into interesting shapes, such as a Tyrannosaurus rex. It’s
often called the oldest known mathematical puzzle.

Your challenge today: Color in the regions of the Ostomachion square with four
colors such that each color shades an equal area. (That is, each color needs to
shade 36 square units.)

Figure 35:

22.1 Python code
Let the areas be labelled as follows:

80/116

Figure 36:

from z3 import *
from math import factorial

connections = {
 0:[1,5,6], 1:[0,2,13], 2:[1,12,3,5], 3:[2,4,5],
 4:[3,5], 5:[0,2,3,4,6], 6:[0,5], 7:[8,13], 8:[7,9],
 9:[8,10], 10:[9,11,13], 11:[10,12], 12:[11,13,2], 13:[1,7,10,12]
}

areas = {
 0:12, 1:6, 2:21, 3:3, 4:6, 5:12, 6:12,
 7:24, 8:3, 9:9, 10:6, 11:12, 12:6, 13:12
}

col_map = {0:"Red", 1:"Blue", 2:"Green", 3:"Yellow", 4:"Orange",
5:"Pink"}

num_colours = 4
total_area = 144
def OstomachionSolver():
 X = [Int("x_%s" % i) for i in range(14)]
 s = Solver()
 s.add([And(0 <= X[i], X[i]<= num_colours-1) for i in range(14)])
 for c in range(num_colours):
 s.add(sum([If(X[i] == c, areas[i], 0) for i in range(14)])
 == (total_area//num_colours))
 for i in range(14):
 for j in connections[i]:
 s.add(X[i] != X[j])

81/116

 cnt_sol = 0
 while s.check() == sat:
 cnt_sol += 1
 m = s.model()
 s.add(Or([X[i] != m.eval(X[i]) for i in range(14)]))
 print("Unique solutions :", cnt_sol / factorial(num_colours))
 for i in range(14):
 print("Area %d - %s " % (i ,
col_map[int(str(m.evaluate(X[i])))]))

OstomachionSolver()

22.2 Solution
A colouring which satisfies the constraints is as follows:

Area 0 - Red

Area 1 - Yellow

Area 2 - Green

Area 3 - Yellow

Area 4 - Green

Area 5 - Blue

Area 6 - Yellow

Area 7 - Red

Area 8 - Green

Area 9 - Yellow

Area 10 - Green

Area 11 - Blue

Area 12 - Yellow

Area 13 - Blue

82/116

23 Numbers in circles
Write numbers from 1 through 19 in the circles so that the numbers in every 3
circles on a straight line total 30.

23.1 Computational Solution
We use a constraint programming to solve this puzzle. Using the code below,
we see that the number in the central circle is 10 and the other pairs are
(18, 2), (17, 3), (16, 4),(15,5), (14, 6),(13, 7), (12, 8), (19, 1), (11, 9).

from ortools.sat.python import cp_model

def solve():
 model = cp_model.CpModel()
 x = [model.NewIntVar(1, 19, 'x_%i' % i) for i in range(19)]

 model.AddAllDifferent(x)
 for i in range(1, 10):
 model.Add(x[0] + x[i] + x[i + 9] == 30)

 solver = cp_model.CpSolver()
 status = solver.Solve(model)
 if status == cp_model.FEASIBLE or status == cp_model.OPTIMAL:
 print(solver.Value(x[0]))
 for i in range(1,10):
 print(solver.Value(x[i]), solver.Value(x[i+9]))
 else:
 print('No solution found!')

solve()

24 Sweets in a box
Sixteen chocolates sit in a four-by-four box. What is the number of different
ways you can choose six chocolates to remove such that an even number is left
in each row and column?

24.1 Analytical solution

The number 6 is particularly nice: if you remove one chocolate from a given
row, you have to remove at least 2 (to leave it even). Thus, you can only remove

83/116

chocolates from up to 3 rows, so there is an untouched row. By symmetry, there
is an untouched column. In the remaining rows and columns, we have to
remove 2 each – but this is the same as saying we have to leave exactly 1. So the
answer is 4 × 4 × 3! = 96.

24.2 Computational solution

We implement a simple brute-force solution where we remove any 6 of the 16
chocolates and check if the required condition holds true. Using the code below,
we see that the number of different ways of removing 6 chocolates in 96.

24.2.1 Python code

from itertools import combinations
import numpy as np

r, c, s = 4, 4, 6
lines = []
for i in range(r):
 lines.append(list(range(i*c, (i+1)*c)))
for i in range(c):
 lines.append(list(range(i, r*c, c)))

cnt = 0
for mps in combinations(range(r*c), s):
 sweets = np.ones(r*c)
 sweets[list(mps)] = 0
 if all([sum(sweets[l]) % 2 == 0 for l in lines]):
 cnt += 1
print(cnt)

84/116

85/116

25 Bug Byte
I recently came across this fantastic puzzle Bug Byte devised by the folks at
Jane Street from Numberphile.

86/116

https://www.janestreet.com/bug-byte/

25.1 Solution
Jane Street puzzles have a reputation for being fiendishly difficult so I didn’t
want to tackle them by hand. I wanted to squash this recreational “bug” using
heavy duty computational machinery 😀. Given that this is a puzzle involving
Graph Theory and Constraint Programming, I immediately got to work
using my favourite Python libraries in this space, networkx and the venerable
z3.

25.1.1 First constraint

There are 24 edges in the graph and each edge has to have a distinct weight
between 1 and 24. As the weights of 4 edges have already been provided, we
only need 20 variables for the weights of the remaining edges. The code below
shows how the above constraint can be implemented using z3.

w = [Int("w%d" % i) for i in range(20)]
s = Solver()
s.add(Distinct(w))
for i in range(20):
 s.add(And(w[i] >= 1, w[i] <= 24))

25.1.2 Second constraint

The sum of edges directly connected to white nodes with a green border is
equal to the number inside the node. Once we assign the weight variables to
each of the edges, the code below shows how to implement this
straightforward constraint in z3.

s.add(w[0] + w[1] == 17)
s.add(w[0] + w[2] == 3)
s.add(w[3] + w[4] + w[6] + w[7] == 54)
s.add(24 + w[7] + w[8] + w[9] + w[13] == 60)
s.add(w[5] + w[9] + w[10] + 20 == 49)
s.add(w[13] + w[14] + w[15] + 20 == 75)
s.add(w[11] + w[6] + w[12] + 7 + 24 == 79)
s.add(w[12] + w[16] + w[17] == 29)
s.add(w[14] + w[17] + w[19] == 25)
s.add(7 + w[16] + w[18] == 39)

25.1.3 Third constraint

For each green node, the number inside the node represents the sum of the
edge weights of a simple non intersecting path starting from that node. This is
the trickiest constraint of the three but thankfully we can get networkx to do
the heavylifting.

25.1.4 Graph Creation

We first create a weighted graph using the code below.

G = nx.Graph()
G.add_edge(1, 2, weight=w[0])
G.add_edge(1, 4, weight=w[1])

87/116

G.add_edge(2, 5, weight=w[2])
G.add_edge(4, 5, weight=12)
G.add_edge(4, 7, weight=w[4])
G.add_edge(3, 7, weight=w[3])
G.add_edge(5, 9, weight=w[5])
G.add_edge(6, 9, weight=w[10])
G.add_edge(7, 11, weight=w[7])
G.add_edge(8, 11, weight=w[8])
G.add_edge(9, 11, weight=w[9])
G.add_edge(7, 10, weight=w[6])
G.add_edge(10, 18, weight=w[11])
G.add_edge(10, 14, weight=7)
G.add_edge(10, 13, weight=w[12])
G.add_edge(11, 10, weight=24)
G.add_edge(11, 12, weight=w[13])
G.add_edge(9, 12, weight=20)
G.add_edge(13, 14, weight=w[16])
G.add_edge(12, 16, weight=w[14])
G.add_edge(12, 17, weight=w[15])
G.add_edge(13, 16, weight=w[17])
G.add_edge(14, 15, weight=w[18])
G.add_edge(16, 15, weight=w[19])

25.1.5 Implementing path constraints

From each green node, we find all the simple paths to all other nodes using the
all_simple_paths function from networkx and calculate the weight of each
path in terms of the weight variables. The thing here to note is that we have to
use an “Or” constraint as the number inside each green node has to match the
total path weight for one of the paths. The other insight is that the above logic
doesn’t change whether there there is one number or multiple numbers in each
green node. These insights lead to the simple and elegant code below.

for start_node, total in [(3, 31), (6, 8), (4, 19), (4, 23), (8, 6),
(8, 9), (8, 16)]:
 constraints = []
 for node in set(range(1, 19)) - set([start_node]):
 for path in nx.all_simple_paths(G, start_node, node):
 constraints.append(nx.path_weight(G, path, weight="weight")
== total)
 s.add(Or(constraints))

25.1.6 Checking the model for satisfiability

The last part involves checking the model for satisfiability, finding the shortest
path between the two nodes containing the stars, mapping the edge weights in
the shortest path to alphabets. The code to do that is given below.

if s.check() == sat:
 m = s.model()
 for u, v in G.edges():
 if not (isinstance(G[u][v]["weight"], int)):
 G[u][v]["weight"] = m.evaluate(G[u][v]["weight"]).as_long()

88/116

sp = list(nx.shortest_path(G, 5, 15, weight="weight"))
for u, v in zip(sp, sp[1:]):
 print(chr(ord("@") + G[u][v]["weight"]))

25.2 Python code
Putting all the above code together, you will see that the answer is LINKED.

from z3 import Int, Distinct, And, Or, Solver
import networkx as nx

w = [Int("w%d" % i) for i in range(20)]
s = Solver()
s.add(Distinct(w))
for i in range(20):
 s.add(And(w[i] >= 1, w[i] <= 24))

s.add(w[0] + w[1] == 17)
s.add(w[0] + w[2] == 3)
s.add(w[3] + w[4] + w[6] + w[7] == 54)
s.add(24 + w[7] + w[8] + w[9] + w[13] == 60)
s.add(w[5] + w[9] + w[10] + 20 == 49)
s.add(w[13] + w[14] + w[15] + 20 == 75)
s.add(w[11] + w[6] + w[12] + 7 + 24 == 79)
s.add(w[12] + w[16] + w[17] == 29)
s.add(w[14] + w[17] + w[19] == 25)
s.add(7 + w[16] + w[18] == 39)

G = nx.Graph()
G.add_edge(1, 2, weight=w[0])
G.add_edge(1, 4, weight=w[1])
G.add_edge(2, 5, weight=w[2])
G.add_edge(4, 5, weight=12)
G.add_edge(4, 7, weight=w[4])
G.add_edge(3, 7, weight=w[3])
G.add_edge(5, 9, weight=w[5])
G.add_edge(6, 9, weight=w[10])
G.add_edge(7, 11, weight=w[7])
G.add_edge(8, 11, weight=w[8])
G.add_edge(9, 11, weight=w[9])
G.add_edge(7, 10, weight=w[6])
G.add_edge(10, 18, weight=w[11])
G.add_edge(10, 14, weight=7)
G.add_edge(10, 13, weight=w[12])
G.add_edge(11, 10, weight=24)
G.add_edge(11, 12, weight=w[13])
G.add_edge(9, 12, weight=20)
G.add_edge(13, 14, weight=w[16])
G.add_edge(12, 16, weight=w[14])
G.add_edge(12, 17, weight=w[15])
G.add_edge(13, 16, weight=w[17])

89/116

G.add_edge(14, 15, weight=w[18])
G.add_edge(16, 15, weight=w[19])

for start_node, total in [(3, 31), (6, 8), (4, 19), (4, 23), (8, 6),
(8, 9), (8, 16)]:
 constraints = []
 for node in set(range(1, 19)) - set([start_node]):
 for path in nx.all_simple_paths(G, start_node, node):
 constraints.append(nx.path_weight(G, path, weight="weight")
== total)
 s.add(Or(constraints))

if s.check() == sat:
 m = s.model()
 for u, v in G.edges():
 if not (isinstance(G[u][v]["weight"], int)):
 G[u][v]["weight"] = m.evaluate(G[u][v]["weight"]).as_long()

sp = list(nx.shortest_path(G, 5, 15, weight="weight"))
for u, v in zip(sp, sp[1:]):
 print(chr(ord("@") + G[u][v]["weight"]))

90/116

26 Dancer Pairs
15 dancers are standing in an equilateral triangle formation, with every dancer
standing 1 unit apart from her nearest neighbors. Each dancer chooses another
who is 1 unit away to pair up with, and all but 1 dancer ends up as a part of a
pair. An example of one such arrangement is presented here.

How many different sets of 7 pairs are possible?

26.1 Solution
We use a backtracking algorithm in the generate_all_pairings function to
generate all possible combinations. The backtrack function:

• Takes the current index, the current pairing, and the set of used nodes.

• If we have 7 pairs, we add the current pairing to our list of all pairings.

• For each node from the current index onwards:

‣ If the node is already used, we skip it.

‣ For each neighbor of the node:

– If the neighbor is not used and has a higher index (to avoid duplicates),
we create a new pairing with this pair.

– We then recursively call backtrack with the updated pairing and used
nodes.

• We use frozensets to represent pairs and combinations of pairs, allowing us
to eliminate duplicates easily.

The code below shows us that there are 𝟐𝟒𝟎 ways of pairing the dancers. Here
are a few sample pairings:

91/116

26.2 Python code
import networkx as nx
from itertools import combinations
import matplotlib.pyplot as plt
import math

def create_dancer_graph():
 G = nx.Graph()
 edges = [
 (1, 2), (1, 3),
 (2, 3), (2, 4), (2, 5),
 (3, 5), (3, 6),
 (4, 5), (4, 7), (4, 8),
 (5, 6), (5, 9), (5, 8),
 (6, 9), (6, 10),
 (7,8),(7, 11), (7, 12),
 (8, 9), (8, 13), (8,12),
 (9, 10), (9, 13), (9, 14),

92/116

 (10, 14), (10, 15),
 (11,12),(12,13),(13,14),(14,15)
]
 G.add_edges_from(edges)
 return G

def generate_all_pairings(G):
 all_pairings = []
 nodes = list(G.nodes())

 def backtrack(index, current_pairing, used_nodes):
 if len(current_pairing) == 7:
 all_pairings.append(frozenset(map(frozenset,
current_pairing)))
 return

 for i in range(index, len(nodes)):
 node = nodes[i]
 if node in used_nodes:
 continue

 for neighbor in G.neighbors(node):
 if neighbor not in used_nodes and neighbor > node:
 new_pairing = current_pairing + [(node, neighbor)]
 new_used_nodes = used_nodes | {node, neighbor}
 backtrack(i + 1, new_pairing, new_used_nodes)

 backtrack(0, [], set())
 return set(all_pairings)

Create the graph
G = create_dancer_graph()

Generate all combinations
all_combinations = generate_all_pairings(G)

print(f"Total number of combinations: {len(all_combinations)}")

93/116

27 Some Off Square
A circle is randomly generated by sampling two points uniformly and
independently from the interior of a square and using these points to
determine its diameter. What is the probability that the circle has a part of it
that is off the square? Give your answer in exact terms.

27.1 Solution

Let 𝑃1, 𝑃2 be the picked points and 𝑀 be the midpoint of 𝑃1𝑃2. Our random
circle intersects the square iff the distance of 𝑀 from the boundary of the
square is less than the length of 𝑀𝑃1 or 𝑀𝑃2. Thus, assuming that the square
is given by [−1, 1]2 and 𝑃1 = (𝑥1, 𝑦1), 𝑃2 = (𝑥2, 𝑦), we want the probability
of the event

min(1 − |𝑥1 + 𝑥2
2

|, 1 − |𝑦1 + 𝑦2
2

|) ≤ 1
2

√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2(27.1)

with 𝑥1, 𝑥2, 𝑦1, 𝑦2 being independent and uniformly distributed random
variables over the interval [−1, 1].

We use Monte Carlo simulation to estimate the probability. Using the Python
code below, we see that the required probability is 𝟎.𝟒𝟕𝟔.

94/116

27.2 Python code
from random import uniform
from math import sqrt

runs = 10000000
cnt = 0
for _ in range(runs):
 x_1, x_2, y_1, y_2 = uniform(-1,1), uniform(-1,1), uniform(-1,1),
uniform(-1,1)
 if min(2-abs(x_1+x_2), 2-abs(y_1+y_2))<= sqrt((x_1-x_2)**2+(y_1-
y_2)**2):
 cnt += 1
print(cnt/runs)

95/116

28 Number hooks
In the grid below, enter nine 9’s in the outermost hook, eight 8’s in the next
hook, then seven 7’s, six 6’s, and so on, down to the one 1 (already entered), so
that the row and column sums match the values given along the border.

28.1 Solution
The code below provides the following solution to the above puzzle:

1 . 3 . . 6 7 . 9
2 2 3 . 5 6 7 8 9
3 8 .
4 4 4 4 . 6 . . .
5 5 5 5 . 6 7 . 9
. . 6 . . 6 7 8 9
7 . 7 7 . . . 8 .
. 8 8 . . 8 . 8 .
9 . 9 . . 9 . 9 9

28.2 Python code
from z3 import *

def generate_hooks(size):
 hooks = []
 for n in range(1, size + 1):
 hook = []
 for i in range(n):
 for j in range(n):
 if i == n - 1 or j == n - 1:
 hook.append((i, j))
 hooks.append(hook)
 return hooks

row_sums = [26, 42, 11, 22, 42, 36, 29, 32, 45]
col_sums = [31, 19, 45, 16, 5, 47, 28, 49, 45]

96/116

def solve_number_hook_puzzle():
 solver = Solver()

 # Create a 9x9 grid of integer variables
 grid = [[Int(f"cell_{i}_{j}") for j in range(9)] for i in range(9)]

 # Add constraints for row and column sums
 for i in range(9):
 solver.add(Sum(grid[i]) == row_sums[i])
 solver.add(Sum([grid[j][i] for j in range(9)]) == col_sums[i])

 # Generate hooks
 hooks = generate_hooks(9)

 # Add constraints for the hooks
 for i, hook in enumerate(hooks):
 value = i + 1 # Values from 1 to 9
 cells_in_hook = [grid[r][c] for r, c in hook]
 solver.add(Sum([If(cell == value, 1, 0) for cell in
cells_in_hook]) == value)
 for r, c in hook:
 solver.add(Or(grid[r][c] == value, grid[r][c] == 0))

 # Ensure all numbers are between 0 and 9 (0 for empty cells)
 for row in grid:
 for cell in row:
 solver.add(And(cell >= 0, cell <= 9))

 # Check if the puzzle is solvable
 if solver.check() == sat:
 model = solver.model()
 return [[model.evaluate(grid[i][j]).as_long() for j in
range(9)] for i in range(9)]
 else:
 return None

Solve the puzzle
solution = solve_number_hook_puzzle()

Print the solution
if solution:
 for row in solution:
 print(" ".join(map(lambda x: str(x) if x != 0 else '.', row)))
else:
 print("No solution found.")

97/116

29 Sum of squares
Place a digit in each of the 25 spots in the below 5 × 5 grid, so that each 5-digit
number (leading zeroes are ok) reading across and reading down is divisible by
the number outside the grid, trying to maximize the sum of the 25 numbers
you enter. An example of a completed grid with sum 100 is presented on the
right.

29.1 Solution
The code below gives the following solution

9 8 9 9 9
9 9 9 9 8
7 9 8 9 9
9 9 8 9 6
8 9 8 9 0
Total sum: 205

29.2 Python code
from z3 import *

row_divisors = [1, 2, 3, 4, 5]
col_divisors = [6, 7, 8, 9, 10]

def solve_grid_puzzle():
 opt = Optimize()
 grid = [[Int(f"cell_{i}_{j}") for j in range(5)] for i in range(5)]

 for row in grid:
 for cell in row:
 opt.add(And(cell >= 0, cell <= 9))

 def make_number(digits):
 return Sum([digits[i] * 10**(4-i) for i in range(5)])

 for i, row in enumerate(grid):

98/116

 opt.add(make_number(row) % row_divisors[i] == 0)

 for j in range(5):
 column = [grid[i][j] for i in range(5)]
 opt.add(make_number(column) % col_divisors[j] == 0)

 total_sum = Sum([cell for row in grid for cell in row])
 opt.maximize(total_sum)

 if opt.check() == sat:
 m = opt.model()
 result = [[m.evaluate(grid[i][j]).as_long() for j in range(5)]
for i in range(5)]
 return result, m.evaluate(total_sum).as_long()
 else:
 return None, None

solution, total = solve_grid_puzzle()

if solution:
 for row in solution:
 print(" ".join(map(str, row)))
 print(f"Total sum: {total}")
else:
 print("No solution found.")

99/116

30 Well Well Well
A 7-by-7′ well is dug. It has a peculiar shape: its depth varies from one 1′-by-1′
section to another, as shown below. Each section is marked with its depth. (E.g.,
the deepest section is 49′ deep.)

Water is poured into the well from a point above the section marked 1, at a rate
of 1 cubic foot per minute. Assume that water entering a region of constant
depth immediately disperses to any orthogonally adjacent lower-depth regions
evenly along its exposed perimeter.

After how many minutes will the water level on section 43 begin to rise?

30.1 Solution

The grid below shows the depths of the well after 𝟑𝟔𝟎 minutes. In the next
minute the water in the last well will rise.

100/116

30.2 Python code
import networkx as nx
from fractions import Fraction
from matplotlib import pyplot as plt
import numpy as np

def find_next_deeper_neighbors(G, start):
 depth = G.nodes[start]['depth']
 equal_depth_nodes = {start}
 frontier = [start]
 while frontier:
 node = frontier.pop(0)
 for neighbor in G.neighbors(node):
 if G.nodes[neighbor]['depth'] == depth and neighbor not in
equal_depth_nodes:
 equal_depth_nodes.add(neighbor)
 frontier.append(neighbor)
 deeper_neighbors = set()
 for node in equal_depth_nodes:
 for neighbor in G.neighbors(node):
 if G.nodes[neighbor]['depth'] > depth:
 deeper_neighbors.add(neighbor)
 return list(equal_depth_nodes), list(deeper_neighbors)

def distribute_water(G, node, water_amount):
 deeper_neighbors = [neighbor for neighbor in G.neighbors(node)
 if G.nodes[neighbor]['depth'] > G.nodes[node]
['depth']]
 if deeper_neighbors:
 water_per_neighbor = Fraction(water_amount,
len(deeper_neighbors))
 for neighbor in deeper_neighbors:
 distribute_water(G, neighbor, water_per_neighbor)
 else:
 equal_nodes, next_deeper_neighbors =
find_next_deeper_neighbors(G, node)
 if next_deeper_neighbors:
 water_per_neighbor = Fraction(water_amount,
len(next_deeper_neighbors))
 for node in next_deeper_neighbors:
 distribute_water(G, node, water_per_neighbor)
 else:
 if equal_nodes:
 water_per_neighbor = Fraction(water_amount,
len(equal_nodes))
 for node in equal_nodes:
 G.nodes[node]['depth'] -=
Fraction(water_per_neighbor,1)
 else:
 G.nodes[node]['depth'] -= Fraction(water_amount,1)

def plot_depths(G):

101/116

 max_x = max(node[0] for node in G.nodes())
 max_y = max(node[1] for node in G.nodes())
 depths = np.zeros((max_y + 1, max_x + 1))
 for node, data in G.nodes(data=True):
 depths[node[1], node[0]] = data['depth']
 fig, ax = plt.subplots(figsize=(6,6))
 im = ax.imshow(depths)
 for i in range(depths.shape[0]):
 for j in range(depths.shape[1]):
 text = ax.text(j, i, int(round(depths[i, j],0)),
 ha="center", va="center", color="black",
fontsize=12)
 ax.set_title("Depth Distribution")
 plt.axis('off')
 plt.tight_layout()
 plt.show()

def simulate_water_flow(G):
 t = 0
 while G.nodes[(6,6)]['depth'] == 43:
 distribute_water(G,(0,0),Fraction(1,1))
 t +=1
 print("The amount of time required to start filling well (6,6) is",
t-1)

def create_well_depth_lattice():
 depths = [[1,5,27,22,28,40,14],
 [39,13,17,30,41,12,2],
 [32,35,24,25,19,47,34],
 [16,33,10,42,7,44,18],
 [3,8,45,37,4,21,20],
 [15,46,38,6,26,48,49],
 [9,23,31,29,11,36,43]]
 G = nx.grid_2d_graph(7,7)
 for i in range(7):
 for j in range(7):
 G.nodes[(i,j)]['depth']=Fraction(depths[i][j],1)
 return G

G = create_well_depth_lattice()
simulate_water_flow(G)
plot_depths(G)

102/116

31 Block Party

31.1 Solution
Using the Python code below which makes use of the z3 library we get the
solution below

103/116

31.2 Python code
from z3 import *
import random
from matplotlib import pyplot as plt
import numpy as np

def solve_block_party(grid):
 solver = Solver()
 n = 9 # Grid size

 # Create Z3 variables for each cell
 cells = [[Int(f"cell_{i}_{j}") for j in range(n)] for i in
range(n)]

 for i in range(n):
 for j in range(n):
 solver.add(And(1 <= cells[i][j], cells[i][j] <= 9))

 # Process grid constraints
 for item in grid:
 if isinstance(item, tuple): # Pre-filled number
 i, j, value = item
 solver.add(cells[i][j] == value)
 elif isinstance(item, list): # Region
 size = len(item)
 solver.add(Distinct([cells[x][y] for x, y in item]))
 for x, y in item:
 solver.add(And(1 <= cells[x][y], cells[x][y] <= size))

 # K value rule for all cells
 for i in range(n):
 for j in range(n):
 rule_constraints = []
 for k in range(1, 10): # k can be 1 to 9
 # Left

104/116

 if j >= k:
 rule_constraints.append(
 And(cells[i][j] == k, cells[i][j-k] == k,
 And([cells[i][jj] != k for jj in range(j-
k+1, j)]))
)
 # Right
 if j + k < n:
 rule_constraints.append(
 And(cells[i][j] == k, cells[i][j+k] == k,
 And([cells[i][jj] != k for jj in range(j+1,
j+k)]))
)
 # Up
 if i >= k:
 rule_constraints.append(
 And(cells[i][j] == k, cells[i-k][j] == k,
 And([cells[ii][j] != k for ii in range(i-
k+1, i)]))
)
 # Down
 if i + k < n:
 rule_constraints.append(
 And(cells[i][j] == k, cells[i+k][j] == k,
 And([cells[ii][j] != k for ii in range(i+1,
i+k)]))
)

 solver.add(Or(rule_constraints))

 # Solve the puzzle
 if solver.check() == sat:
 model = solver.model()
 solution = [[model.evaluate(cells[i][j]).as_long() for j in
range(n)] for i in range(n)]
 return solution
 else:
 return None

9x9 grid representation based on the bold lines in the image
grid = [
 # Pre-filled numbers: (row, column, value)
 (1, 4, 2), (4, 1, 4), (4, 7, 1), (7, 4, 1),
 # Regions: list of (row, column) coordinates
 [[0,0],[0,1],[1,0],[1,1],[2,0]],
 [[2,1],[3,1]],
 [[0,2]],
 [[0,3],[0,4],[1,2],[1,3]],
 [[1,4],[2,2],[2,3],[2,4],[3,2],[3,4]],
 [[3,3]],
 [[0,5],[0,6],[0,7],[1,6],[1,7]],
 [[0,8],[1,8],[2,8],[2,7]],
 [[3,0],[4,0],[5,0],[4,1],[5,1],[6,1]],

105/116

 [[6,0],[7,0],[8,0]],
 [[3,7],[3,8]],
 [[1,5],[2,5],[2,6],[3,6]],
 [[4,2],[4,3]],
 [[4,4],[4,5],[5,2],[5,3],[5,4]],
 [[5,5]],
 [[4,6],[5,6]],
 [[4,7],[4,8],[5,8]],
 [[6,2],[6,3]],
 [[6,4],[6,5],[7,5],[7,6]],
 [[5,7],[6,6],[6,7],[6,8],[7,8],[8,8]],
 [[7,1],[7,2]],
 [[7,3],[7,4],[8,1],[8,2],[8,3],[8,4]],
 [[7,7],[8,7],[8,6],[8,5]]
]

solution = solve_block_party(grid)

def generate_distinct_colors(n):
 colors = []
 for i in range(n):
 while True:
 color = "#"+''.join([random.choice('0123456789ABCDEF') for
j in range(6)])
 if color not in colors:
 colors.append(color)
 break
 return colors

def visualize_solution(solution, grid):
 n = 9
 fig, ax = plt.subplots(figsize=(10, 10))

 # Generate distinct colors for each region
 region_colors = generate_distinct_colors(len([item for item in grid
if isinstance(item, list)]))

 # Draw grid
 for i in range(n+1):
 ax.axhline(i, color='black', linewidth=0.5)
 ax.axvline(i, color='black', linewidth=0.5)

 # Color regions
 color_index = 0
 for region in grid:
 if isinstance(region, list):
 for i, j in region:
 ax.add_patch(plt.Rectangle((j, n-i-1), 1, 1,
fill=True,

facecolor=region_colors[color_index], alpha=0.5))
 color_index += 1

106/116

 # Add numbers
 for i in range(n):
 for j in range(n):
 ax.text(j+0.5, n-i-0.5, str(solution[i][j]), ha='center',
va='center', fontsize=12, fontweight='bold')

 # Set limits and remove ticks
 ax.set_xlim(0, n)
 ax.set_ylim(0, n)
 ax.set_xticks([])
 ax.set_yticks([])

 # Add title
 plt.title('Block Party Puzzle Solution')

 return fig

if solution:
 for row in solution:
 print(" ".join(map(str, row)))

 fig = visualize_solution(solution, grid)
 plt.show()
else:
 print("No solution found")

107/116

32 Block Party 4

Fill each region with the numbers 1 through 𝑁 , where 𝑁 is the number of cells
in the region. For each number 𝐾 in the grid, the nearest 𝐾 via taxicab
distance must be exactly 𝐾 cells away.

32.1 Solution
Here is the solution to the puzzle:

108/116

32.2 Python code
from z3 import *
import matplotlib.pyplot as plt
import random

def solve_block_party(grid):
 solver = Solver()
 n = 10 # Grid size

 # Create Z3 variables for each cell
 cells = [[Int(f"cell_{i}_{j}") for j in range(n)] for i in
range(n)]

 # Process grid constraints
 for item in grid:
 if isinstance(item, tuple): # Pre-filled number
 i, j, value = item
 solver.add(cells[i][j] == value)
 elif isinstance(item, list): # Region
 size = len(item)
 solver.add(Distinct([cells[x][y] for x, y in item]))
 for x, y in item:
 solver.add(And(1 <= cells[x][y], cells[x][y] <= size))

 # K value rule for all cells
 for i in range(n):
 for j in range(n):
 k = cells[i][j]

 # No cells with value k closer than distance k
 solver.add(And([
 Implies(
 cells[x][y] == k,
 abs(x - i) + abs(y - j) >= k
)
 for x in range(n) for y in range(n)
 if (x != i or y != j)
]))

 # At least one cell with value k at exactly distance k
 solver.add(Or([
 And(cells[x][y] == k, abs(x - i) + abs(y - j) == k)
 for x in range(n) for y in range(n)
 if (x != i or y != j)
]))

 # Ensure all cells have values between 1 and 9
 for i in range(n):
 for j in range(n):
 solver.add(And(1 <= cells[i][j], cells[i][j] <= 10))

 # Solve the puzzle

109/116

 if solver.check() == sat:
 model = solver.model()
 solution = [[model.evaluate(cells[i][j]).as_long() for j in
range(n)] for i in range(n)]
 return solution
 else:
 return None

def generate_distinct_colors(n):
 colors = []
 for i in range(n):
 while True:
 color = "#"+''.join([random.choice('0123456789ABCDEF') for
j in range(6)])
 if color not in colors:
 colors.append(color)
 break
 return colors

def visualize_solution(solution, grid):
 n = 10
 fig, ax = plt.subplots(figsize=(10, 10))

 # Generate distinct colors for each region
 region_colors = generate_distinct_colors(len([item for item in grid
if isinstance(item, list)]))

 # Draw grid
 for i in range(n+1):
 ax.axhline(i, color='black', linewidth=0.5)
 ax.axvline(i, color='black', linewidth=0.5)

 # Color regions
 color_index = 0
 for region in grid:
 if isinstance(region, list):
 for i, j in region:
 ax.add_patch(plt.Rectangle((j, n-i-1), 1, 1,
fill=True,

facecolor=region_colors[color_index], alpha=0.5))
 color_index += 1

 # Add numbers
 for i in range(n):
 for j in range(n):
 ax.text(j+0.5, n-i-0.5, str(solution[i][j]), ha='center',
va='center', fontsize=14, fontweight='bold')

 # Set limits and remove ticks
 ax.set_xlim(0, n)
 ax.set_ylim(0, n)
 ax.set_xticks([])

110/116

 ax.set_yticks([])

 # Add title
 plt.title('Block Party Puzzle Solution')

 return fig

9x9 grid representation based on the bold lines in the image
grid = [
 # Pre-filled numbers: (row, column, value)
 (0, 1, 3), (0, 5, 7), (2, 8, 2),
 (1, 3, 4), (3, 3, 1), (4, 0, 6), (4, 2, 1),
 (5, 7, 3), (5, 9, 6), (6, 6, 2), (7, 1, 2),
 (8, 6, 6), (9, 4, 5), (9, 8, 2),

 # Regions: list of (row, column) coordinates
 [[0,0], [1,0], [1,1], [2,0],[2,1],[3,0],[3,1],[4,0],[5,0],[6,0]],
 [[0,1],[0,2],[0,3],[1,2],[1,3],[1,4]],
 [[0,4],[0,5],[0,6],[0,7],[0,8],[0,9],[1,5],[1,8],[1,9]],
 [[1,6],[1,7],[2,7]],
 [[2,2],[2,3],[3,3]],
 [[2,4],[2,5]],
 [[2,6],[3,5],[3,6],[3,7],[4,7],[4,8]],
 [[3,2],[4,1],[4,2],[5,2]],
 [[5,1]],
 [[3,4],[4,3],[4,4]],
 [[2,8],[2,9],[3,8],[3,9],[4,9],[5,8],[5,9]],
 [[4,6]],
 [[5,4]],
 [[4,5],[5,5]],
 [[5,3],[6,3],[6,4],[6,5],[7,4]],
 [[5,6],[5,7],[6,6]],
 [[6,7],[6,8],[6,9]],
 [[6,2],[7,2]],
 [[6,1],[7,0],[8,0],[9,0],[7,1],[8,1],[9,1],[8,2],[9,2],[9,3]],
 [[7,3],[8,3],[8,4],[9,4],[9,5]],
 [[7,5]],
 [[7,6],[8,5],[8,6],[9,6],[9,7],[9,8],[9,9],[8,9],[7,9]],
 [[7,7],[7,8],[8,7],[8,8]]
]

solution = solve_block_party(grid)

if solution:
 print("Solution found:")
 for row in solution:
 print(" ".join(map(str, row)))

 fig = visualize_solution(solution, grid)
 plt.show()
else:
 print("No solution found")

111/116

33 Figurine figuring
Jane received 78 figurines as gifts this holiday season: 12 drummers
drumming, 11 pipers piping, 10 lords a-leaping, etc., down to 1 partridge in a
pear tree. They are all mixed together in a big bag. She agrees with her friend
Alex that this seems like too many figurines for one person to have, so she
decides to give some of her figurines to Alex. Jane will uniformly randomly pull
figurines out of the bag one at a time until she pulls out the partridge in a pear
tree, and will give Alex all of the figurines she pulled out of the bag (except the
partridge, that’s Jane’s favorite).

If 𝑛 is the maximum number of any one type of ornament that Alex gets, what
is the expected value of 𝑛, to seven significant figures?

33.1 Solution

Using Monte-Carlo simulation, the expected value of 𝑛 is 𝟔.𝟖𝟕.

33.2 Python code
import random
from collections import Counter

def simulate_picking():
 letters = [chr(65 + i) for i in range(12) for _ in range(i + 1)]
 random.shuffle(letters)
 picks = []
 while True:
 pick = letters.pop()
 picks.append(pick)
 if pick == 'A':
 break
 return max(Counter(picks).values())

def monte_carlo_simulation(num_simulations):
 total_max_picks = 0
 for _ in range(num_simulations):
 total_max_picks += simulate_picking()
 return total_max_picks / num_simulations

Run the simulation
num_simulations = 10000000
expected_value = monte_carlo_simulation(num_simulations)
print(f"Estimated expected value of the maximum number of a particular
figure chosen: {expected_value}")

112/116

34 Queens
Your goal is to have exactly one queen in each row, column, and color region.
Two queens cannot touch each other, not even diagonally.

34.1 Solution
Here are solutions to two Queens puzzles using the Python code below.

Figure 37: Puzzle 1

Figure 38: Puzzle 2

113/116

34.2 Python code
from z3 import *
import matplotlib.pyplot as plt
from matplotlib.colors import to_rgba

def parse_color_grid(color_grid):
 n = len(color_grid)
 color_data = {}
 preplaced_queens = []
 for i, row in enumerate(color_grid):
 for j, cell in enumerate(row):
 color = cell[1] if cell.startswith('Q') else cell
 if color not in color_data:
 color_data[color] = []
 color_data[color].append((i, j))
 if cell.startswith('Q'):
 preplaced_queens.append((i, j))
 return color_data, preplaced_queens

def solve_n_queens_color(n, color_data, preplaced_queens):
 solver = Solver()
 grid = [[Int(f"cell_{i}_{j}") for j in range(n)] for i in range(n)]
 for row in grid:
 for cell in row:
 solver.add(Or(cell == 0, cell == 1))
 for i, j in preplaced_queens:
 solver.add(grid[i][j] == 1)
 for row in grid:
 solver.add(Sum(row) == 1)
 for j in range(n):
 solver.add(Sum([grid[i][j] for i in range(n)]) == 1)
 directions = [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1),
(1,0), (1,1)]
 for i in range(n):
 for j in range(n):
 for di, dj in directions:
 ni, nj = i + di, j + dj
 if 0 <= ni < n and 0 <= nj < n:
 solver.add(Implies(grid[i][j] == 1, grid[ni][nj] ==
0))
 for color, squares in color_data.items():
 solver.add(Sum([grid[i][j] for i, j in squares]) == 1)
 if solver.check() == sat:
 return solver.model(), grid
 else:
 return None, None

COLOR_MAP = {
 'P': '#bba3e2',
 'Y': '#e6f386',
 'O': '#ff7b60',
 'B': '#96beff',

114/116

 'C': '#ffc992',
 'G': '#9e9e9f',
 'K': '#f5f6f7',
 'M': '#b3dfa0',
 'D': '#dc9fbc'
}

def visualize_solution(model, grid, color_data, n):
 fig, ax = plt.subplots(figsize=(10, 10))
 ax.set_aspect('equal')
 ax.set_xlim(0, n)
 ax.set_ylim(0, n)
 ax.set_xticks([])
 ax.set_yticks([])
 for i in range(n):
 for j in range(n):
 color = next(c for c, squares in color_data.items() if (i,
j) in squares)
 ax.add_patch(plt.Rectangle((j, n-1-i), 1, 1,
facecolor=COLOR_MAP.get(color, 'white'), edgecolor='black'))
 if model.evaluate(grid[i][j]) == 1:
 ax.add_patch(plt.Circle((j+0.5, n-0.5-i), 0.3,
facecolor='black'))
 legend_elements = [plt.Rectangle((0,0),1,1,facecolor=COLOR_MAP[c])
for c in color_data]
 ax.legend(legend_elements, color_data.keys(), loc='center left',
bbox_to_anchor=(1, 0.5))
 plt.tight_layout()
 plt.show()

puzzle1 = [
 ['P', 'P', 'P', 'P', 'P', 'C','QC','C'],
 ['P', 'C', 'C', 'C', 'QP', 'C','B','C'],
 ['C', 'C', 'M', 'C', 'P', 'C','B','C'],
 ['K', 'K', 'C', 'C', 'P', 'C','B','C'],
 ['C', 'C', 'C', 'O', 'C', 'C','B','C'],
 ['C', 'Y', 'Y', 'C', 'C', 'B','B','C'],
 ['C', 'C', 'C', 'C', 'B', 'B','C','C'],
 ['C', 'C', 'C', 'B', 'B', 'C','C','G'],
]

puzzle2 = [
 ['P', 'P', 'P', 'P', 'P', 'P','P','P','P'],
 ['P', 'P', 'C', 'P', 'B', 'B','B','P','P'],
 ['P', 'C', 'C', 'C', 'M', 'B','B','B','B'],
 ['P', 'P', 'C', 'M', 'M', 'M','G','B','B'],
 ['P', 'P', 'P', 'P', 'M', 'G','G','G','B'],
 ['P', 'D', 'D', 'D', 'K', 'B','G','B','B'],
 ['P', 'O', 'O', 'O', 'K', 'B','B','B','B'],
 ['P', 'O', 'O', 'O', 'K', 'Y','Y','Y','B'],
 ['P', 'P', 'O', 'O', 'O', 'B','B','B','B'],
]

115/116

def solve(color_grid):
 color_data, preplaced_queens = parse_color_grid(color_grid)
 n = len(color_grid)
 model, grid = solve_n_queens_color(n, color_data, preplaced_queens)
 if model:
 print("Solution found!")
 visualize_solution(model, grid, color_data, n)
 else:
 print("No solution found.")

solve(puzzle2)

Bibliography

116/116

	Hashiwokakero
	Mathematical Model
	Solved puzzles
	Python code

	Walls
	Mathematical Model
	Notes on implementation
	Solved puzzles
	Python code

	L-Panel
	Solved Puzzles
	Python code

	Marupeke
	Solved Puzzles
	Python code

	BlockNumber
	Solved Puzzles
	Python code

	Searchlights
	Solved Puzzles
	Python code

	Calendar Puzzle
	Python code

	Instant Insanity
	Solution
	Python Code

	Drive Ya Nuts
	Solution
	Python Code

	Squares Sudoku
	Python code

	Calcudoku
	Python code
	Solution

	Unusual Crossword
	Across
	Down
	Python code

	The Riddle of the Pilgrims
	Model
	Python code

	The Langford Problem
	Beautiful analytical solution
	Model using Integer Programming
	Python code using integer programming
	Model using Constraint Programming
	Python code using constraint programming
	Solution

	Skyscrapers
	Python code
	Solution

	Numbrix
	Python code
	Solution

	Kakuro
	Python code

	Kakurasu
	Python code
	Solution

	3-In-A-Row puzzle
	Python code
	Solution

	Fish
	The Situation
	Hints
	Solution
	Python code

	Flowfree
	Model
	Python code
	Solution

	Ostomachion
	Python code
	Solution

	Numbers in circles
	Computational Solution

	Sweets in a box
	Analytical solution
	Computational solution
	Python code

	Bug Byte
	Solution
	First constraint
	Second constraint
	Third constraint
	Graph Creation
	Implementing path constraints
	Checking the model for satisfiability

	Python code

	Dancer Pairs
	Solution
	Python code

	Some Off Square
	Solution
	Python code

	Number hooks
	Solution
	Python code

	Sum of squares
	Solution
	Python code

	Well Well Well
	Solution
	Python code

	Block Party
	Solution
	Python code

	Block Party 4
	Solution
	Python code

	Figurine figuring
	Solution
	Python code

	Queens
	Solution
	Python code

	Bibliography

